Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunaram Choudhary is active.

Publication


Featured researches published by Chunaram Choudhary.


Science | 2009

Lysine acetylation targets protein complexes and co-regulates major cellular functions.

Chunaram Choudhary; Chanchal Kumar; Florian Gnad; Michael L. Nielsen; Michael Rehman; Tobias C. Walther; J. Olsen; Matthias Mann

Lysine Acetylation Catalog Covalent posttranslational modification is an essential cellular regulatory mechanism by which the activity of proteins can be controlled. Advances in mass spectrometry made it possible for Choudhary et al. (p. 834, published online 16 July) to assess the prevalence of lysine acetylation throughout the whole proteome. Acetylation is much more widespread than previously appreciated and occurs on proteins participating in all sorts of biological functions. Acetylation can influence susceptibility of proteins to phosphorylation and occurs frequently on enzymes that control the modification of other proteins by covalent ubiquitination and on proteins that form large macromolecular complexes. The findings also help to characterize the actions of lysine deacetylase inhibitors, which have shown clinical promise in treatments for cancer. A proteomic-scale analysis of protein acetylation suggests that it is an important biological regulatory mechanism. Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation’s cellular roles. We used high-resolution mass spectrometry to identify 3600 lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other major posttranslational modifications.


Molecular & Cellular Proteomics | 2011

A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles

Sebastian A. Wagner; Petra Beli; Brian T. Weinert; Michael L. Nielsen; Juergen Cox; Matthias Mann; Chunaram Choudhary

Post-translational modification of proteins by ubiquitin is a fundamentally important regulatory mechanism. However, proteome-wide analysis of endogenous ubiquitylation remains a challenging task, and almost always has relied on cells expressing affinity tagged ubiquitin. Here we combine single-step immunoenrichment of ubiquitylated peptides with peptide fractionation and high-resolution mass spectrometry to investigate endogenous ubiquitylation sites. We precisely map 11,054 endogenous putative ubiquitylation sites (diglycine-modified lysines) on 4,273 human proteins. The presented data set covers 67% of the known ubiquitylation sites and contains 10,254 novel sites on proteins with diverse cellular functions including cell signaling, receptor endocytosis, DNA replication, DNA damage repair, and cell cycle progression. Our method enables site-specific quantification of ubiquitylation in response to cellular perturbations and is applicable to any cell type or tissue. Global quantification of ubiquitylation in cells treated with the proteasome inhibitor MG-132 discovers sites that are involved in proteasomal degradation, and suggests a nonproteasomal function for almost half of all sites. Surprisingly, ubiquitylation of about 15% of sites decreased more than twofold within four hours of MG-132 treatment, showing that inhibition of proteasomal function can dramatically reduce ubiquitylation on many sites with non-proteasomal functions. Comparison of ubiquitylation sites with acetylation sites reveals an extensive overlap between the lysine residues targeted by these two modifications. However, the crosstalk between these two post-translational modifications is significantly less frequent on sites that show increased ubiquitylation upon proteasome inhibition. Taken together, we report the largest site-specific ubiquitylation dataset in human cells, and for the first time demonstrate proteome-wide, site-specific quantification of endogenous putative ubiquitylation sites.


Nature Reviews Molecular Cell Biology | 2014

The growing landscape of lysine acetylation links metabolism and cell signalling.

Chunaram Choudhary; Brian T. Weinert; Yuya Nishida; Eric Verdin; Matthias Mann

Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.


Cell Reports | 2012

Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

Alicia Lundby; Kasper Lage; Brian T. Weinert; Dorte B. Bekker-Jensen; Anna Secher; Tine Skovgaard; Christian D. Kelstrup; Anatoliy Dmytriyev; Chunaram Choudhary; Carsten Lundby; J. Olsen

SUMMARY Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.


Science | 2010

Human SIRT6 promotes DNA-end resection through CtIP deacetylation

Abderrahmane Kaidi; Brian T. Weinert; Chunaram Choudhary

UnSIRT6ain Repair Efficient and accurate repair of double-strand DNA breaks is critical for genome stability and involves a process known as homologous recombination. During repair of the sheared ends, the DNA must be resected by trimming one of the two strands on either side of the break. For the repair to be accurate, the remaining single-stranded DNA (ssDNA) has to be bound by the ssDNA-binding protein, RPA, after which the ssDNA can then bind homologous sequences. Kaidi et al. (p. 1348) found that the mammalian deacetylase, SIRT6 (which has been implicated in maintaining genome stability), was critical for resection. At sites of DNA damage, SIRT6 deacetylated and activated CtIP (a protein important for resection), ensuring that resection occurred at the appropriate place and time. A protein implicated in stress, aging, and genome stability is required for the accurate repair of broken DNA. SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6 promotes genome stability.


Molecular Cell | 2009

Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes.

Chunaram Choudhary; J. Olsen; Christian Brandts; Jürgen Cox; Pavankumar N.G. Reddy; Frank-D. Böhmer; Volker Gerke; Dirk-E. Schmidt-Arras; Wolfgang E. Berdel; Carsten Müller-Tidow; Matthias Mann; Hubert Serve

Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrantly activates STAT5 and upregulates its targets, Pim-1/2, but fails to activate PI3K and MAPK signaling. Conversely, membrane targeting of Flt3-ITD strongly activates the MAPK and PI3K pathways, with diminished phosphorylation of STAT5. Global phosphoproteomics quantified 12,186 phosphorylation sites, confirmed compartment-dependent activation of these pathways and discovered many additional components of Flt3-ITD signaling. The differential activation of Akt and Pim kinases by ER-retained Flt3-ITD helped to identify their putative targets. Surprisingly, we find spatial regulation of tyrosine phosphorylation patterns of the receptor itself. Thus, intracellular activation of RTKs by oncogenic mutations in the biosynthetic route may exploit cellular architecture to initiate aberrant signaling cascades, thus evading negative regulation.


Molecular Cell | 2013

Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.

Brian T. Weinert; Vytautas Iesmantavicius; Sebastian A. Wagner; Christian Schölz; Bertil Gummesson; Petra Beli; Thomas Nyström; Chunaram Choudhary

Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.


Science Signaling | 2011

Proteome-Wide Mapping of the Drosophila Acetylome Demonstrates a High Degree of Conservation of Lysine Acetylation

Brian T. Weinert; Sebastian A. Wagner; Heiko Horn; Peter Henriksen; Wenshe R. Liu; J. Olsen; Lars Juhl Jensen; Chunaram Choudhary

Comparing the acetylomes with the phosphoproteomes of flies and humans suggests that phosphorylation sites may have evolved faster than did acetylation sites. Age of the Acetylome Acetylation and phosphorylation are regulatory posttranslational modifications that occur on proteins. With proteome-wide data in divergent species, insights regarding the evolution of these two regulatory processes can be revealed. Weinert et al. report the proteome-wide analysis of acetylated proteins in the fruit fly. Comparing the data on acetylated proteins in humans and flies with proteome sequences of nematodes and zebrafish indicated that acetylated sites were more conserved than were nonacetylated sites, and comparison of the human and fly acetylomes with their phosphoproteomes indicated that acetylation sites were more conserved than were phosphorylation sites. Acetylation intersected with another posttranslational modification, ubiquitylation: Acetylation occurred on one-third of human ubiquitin-conjugating E2 enzymes and influenced the activity of these enzymes, suggesting that acetylation provides another regulatory layer for this other type of posttranslational modification. Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines. With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines were significantly more conserved than were nonacetylated lysines. Bioinformatics analysis using Gene Ontology terms suggested that the proteins with conserved acetylation control cellular processes such as protein translation, protein folding, DNA packaging, and mitochondrial metabolism. We found that acetylation of ubiquitin-conjugating E2 enzymes was evolutionarily conserved, and mutation of a conserved acetylation site impaired the function of the human E2 enzyme UBE2D3. This systems-level analysis of comparative posttranslational modification showed that acetylation is an anciently conserved modification and suggests that phosphorylation sites may have evolved faster than acetylation sites.


Molecular Cell | 2012

Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

Petra Beli; Natalia Lukashchuk; Sebastian A. Wagner; Brian T. Weinert; J. Olsen; Linda Baskcomb; Matthias Mann; Chunaram Choudhary

The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and proteome. We show that phosphorylation-dependent signaling networks are regulated more strongly compared to acetylation. Among the phosphorylated proteins identified are many putative substrates of DNA-PK, ATM, and ATR kinases, but a majority of phosphorylated proteins do not share the ATM/ATR/DNA-PK target consensus motif, suggesting an important role of downstream kinases in amplifying DDR signals. We show that the splicing-regulator phosphatase PPM1G is recruited to sites of DNA damage, while the splicing-associated protein THRAP3 is excluded from these regions. Moreover, THRAP3 depletion causes cellular hypersensitivity to DNA-damaging agents. Collectively, these data broaden our knowledge of DNA damage signaling networks and highlight an important link between RNA metabolism and DNA repair.


Molecular & Cellular Proteomics | 2012

Proteome-wide Analysis of Lysine Acetylation Suggests its Broad Regulatory Scope in Saccharomyces cerevisiae

Peter Henriksen; Sebastian A. Wagner; Brian T. Weinert; Satyan Sharma; Giedrė Bačinskaja; Michael Rehman; André H. Juffer; Tobias C. Walther; Michael Lisby; Chunaram Choudhary

Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.

Collaboration


Dive into the Chunaram Choudhary's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Beli

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Mailand

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge