Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunchen Wu is active.

Publication


Featured researches published by Chunchen Wu.


Virus Research | 2009

Compensatory mutations in NS3 and NS5A proteins enhance the virus production capability of hepatitis C reporter virus

Qingxia Han; Chunlian Xu; Chunchen Wu; Wenbo Zhu; Rongge Yang; Xinwen Chen

In this study, an infectious HCV monocistronic reporter virus was constructed by inserting an EGFP gene into the C-terminus of NS5A in the JFH-1 genome. A robust adaptive mutant, which could produce infectious virions as robustly as the JFH-1 wild type in Huh7.5.1 cells, was subsequently isolated by monitoring EGFP fluorescence. Full genomic sequencing revealed five amino acid substitutions, three located in the helicase domain of NS3 and two positioned in the C-terminus of NS5A. Reverse genetics studies suggested that the NS3 and NS5A mutations acted synergistically to enhance virus production capability possibly by accelerating the virion assembly efficiency but did not affect the replication competence of the adaptive reporter virus. Further analysis revealed that the M260K and T462I substitutions in NS3 and NS5A, respectively, were the key mutations. These adaptive mutations were also effective in the context of the JFH-1 genome.


Journal of General Virology | 2010

Biological significance of amino acid substitutions in hepatitis B surface antigen (HBsAg) for glycosylation, secretion, antigenicity and immunogenicity of HBsAg and hepatitis B virus replication.

Chunchen Wu; Xiaoyong Zhang; Yongjun Tian; Jianhua Song; Dongliang Yang; Michael Roggendorf; Mengji Lu; Xinwen Chen

Amino acid substitutions of hepatitis B surface antigen (HBsAg) may affect the antigenicity and immunogenicity of HBsAg, leading to immune escape and diagnostic failure. The amino acid positions 122 and 160 are known as determinants for HBsAg subtypes d/y and w/r, respectively. The substitution K122I has been shown to strongly affect HBsAg antigenicity. In this study, we investigated the significance of naturally occurring amino acid substitutions K122I, T123N, A159G and K160N. Both T123N and K160N substitutions resulted in additional N-glycosylated forms of HBsAg, while the other mutations produced more glycosylated HBsAg compared with the wild type (wt). Detection of HBsAg by ELISA and immunofluorescence staining indicated that variant HBsAg (vtHBsAg) with K122I was not recognized by HBsAg immunoassays, while vtHBsAg with T123N, A159G, K160N and A159G/K160N had reduced antigenicity. DNA immunization in BALB/c mice revealed that wtHBsAg and vtHBsAg with T123N and K160N are able to induce antibodies to HBsAg (anti-HBs), whereas K122I and A159G greatly impair the ability of HBsAg to trigger anti-HBs responses. The cellular immune response to the HBsAg aa 29-38 epitope was enhanced by the K160N substitution. Using replication competent clones of hepatitis B virus (HBV), T123N and A159G substitutions were shown to strongly reduce virion assembly. The amino acid substitution K160N appeared to compensate for the negative effect of A159G on virion production. These results reveal complex effects of amino acid substitutions on biochemical properties of HBsAg, on antigenicity and immunogenicity, and on the replication of HBV.


Journal of Virology | 2012

Amino Acid Substitutions at Positions 122 and 145 of Hepatitis B Virus Surface Antigen (HBsAg) Determine the Antigenicity and Immunogenicity of HBsAg and Influence In Vivo HBsAg Clearance

Chunchen Wu; Wanyu Deng; Liu Deng; Liang Cao; Bo Qin; Songxia Li; Yun Wang; Rongjuan Pei; Dongliang Yang; Mengji Lu; Xinwen Chen

ABSTRACT A variety of amino acid substitutions, such as K122I and G145R, have been identified around or within the a determinant of hepatitis B surface antigen (HBsAg), impair HBsAg secretion and antibody binding, and may be responsible for immune escape in patients. In this study, we examined how different substitutions at amino acid positions 122 and 145 of HBsAg influence HBsAg expression, secretion, and recognition by anti-HBs antibodies. The results showed that the hydrophobicity, the presence of the phenyl group, and the charges in the side chain of the amino acid residues at position 145 reduced HBsAg secretion and impaired reactivity with anti-HBs antibodies. Only the substitution K122I at position 122 affected HBsAg secretion and recognition by anti-HBs antibodies. Genetic immunization in mice demonstrated that the priming of anti-HBs antibody response was strongly impaired by the substitutions K122I, G145R, and others, like G145I, G145W, and G145E. Mice preimmunized with wild-type HBsAg (wtHBsAg) or variant HBsAg (vtHBsAg) were challenged by hydrodynamic injection (HI) with a replication-competent hepatitis B virus (HBV) clone. HBsAg persisted in peripheral blood for at least 3 days after HI in mice preimmunized with vtHBsAg but was undetectable in mice preimmunized with wtHBsAg, indicating that vtHBsAgs fail to induce proper immune responses for efficient HBsAg clearance. In conclusion, the biochemical properties of amino acid residues at positions 122 and 145 of HBsAg have a major effect on antigenicity and immunogenicity. In addition, the presence of proper anti-HBs antibodies is indispensable for the neutralization and clearance of HBsAg during HBV infection.


PLOS ONE | 2011

DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV) core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic.

Ying Yin; Chunchen Wu; Jingjiao Song; Junzhong Wang; Ejuan Zhang; Hongyan Liu; Dongliang Yang; Xinwen Chen; Mengji Lu; Yang Xu

Background Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance. Principal Findings Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. Conclusion Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses.


Antiviral Research | 2013

The amino acid substitutions rtP177G and rtF249A in the reverse transcriptase domain of hepatitis B virus polymerase reduce the susceptibility to tenofovir

Bo Qin; Bettina Budeus; Liang Cao; Chunchen Wu; Yun Wang; Xiaoyong Zhang; Simon Rayner; Daniel Hoffmann; Mengji Lu; Xinwen Chen

Long term antiviral therapy with nucleoside/nucleotide analogs have been routinely used to treat chronic hepatitis B virus (HBV) infection but may lead to the emergence of drug-resistant viral mutants. However, the HBV resistance mutations for tenofovir (TDF) remain controversial. It is speculated that the genetic barrier for TDF resistance may be high for HBV. We asked whether selected amino acid substitutions in HBV polymerase may reduce susceptibility to TDF. A series of amino acids in HBV polymerase were selected based on bioinformatics analysis for mutagenesis. The replication competence and susceptibility to TDF of the mutated HBV clones were determined both in vitro and in vivo. nineteen mutations in HBV polymerase were included and impaired the replication competence of HBV genome in different degrees. The mutations at rtL77F (sS69C), rtF88L (sF80Y), and rtP177G (sR169G) also significantly affected HBsAg expression. The HBV mutants with rtP177G and rtF249A were found to have reduced susceptibility to TDF in vitro with a resistance index of 2.53 and 12.16, respectively. The testing in in vivo model based on the hydrodynamic injection revealed the antiviral effect of TDF against wild type and mutated HBV genomes and confirmed the reduced the susceptibility of mutant HBV to TDF.


World Journal of Gastroenterology | 2016

Genetic variation of hepatitis B virus and its significance for pathogenesis

Zhen-Hua Zhang; Chunchen Wu; Xinwen Chen; Xu Li; Jun Li; Mengji Lu

Hepatitis B virus (HBV) has a worldwide distribution and is endemic in many populations. Due to its unique life cycle which requires an error-prone reverse transcriptase for replication, it constantly evolves, resulting in tremendous genetic variation in the form of genotypes, sub-genotypes, and mutations. In recent years, there has been considerable research on the relationship between HBV genetic variation and HBV-related pathogenesis, which has profound implications in the natural history of HBV infection, viral detection, immune prevention, drug treatment and prognosis. In this review, we attempted to provide a brief account of the influence of HBV genotype on the pathogenesis of HBV infection and summarize our current knowledge on the effects of HBV mutations in different regions on HBV-associated pathogenesis, with an emphasis on mutations in the preS/S proteins in immune evasion, occult HBV infection and hepatocellular carcinoma (HCC), mutations in polymerase in relation to drug resistance, mutations in HBV core and e antigen in immune evasion, chronicalization of infection and hepatitis B-related acute-on-chronic liver failure, and finally mutations in HBV x proteins in HCC.


Journal of Virology | 2014

Coexistence of Hepatitis B Virus Quasispecies Enhances Viral Replication and the Ability To Induce Host Antibody and Cellular Immune Responses

Liang Cao; Chunchen Wu; Hui Shi; Zuojiong Gong; Ejuan Zhang; Hui Wang; Kaitao Zhao; Shuhui Liu; Songxia Li; Xiuzhu Gao; Yun Wang; Rongjuan Pei; Mengji Lu; Xinwen Chen

ABSTRACT Hepatitis B virus (HBV) quasispecies contain a large number of variants that serve as a reservoir for viral selection under antiviral treatment and the immune response, leading to the acute exacerbation and subsequent development of liver failure. However, there is no clear experimental evidence for a significant role of HBV quasispecies in viral pathogenesis. In the present study, HBV sequences were amplified from a patient with severe liver disease and used for construction of HBV replication-competent plasmids. Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining were performed to analyze the expression, secretion, and subcellular localization of viral proteins in vitro. Viral replication intermediates were detected by Southern blotting. HBV gene expression and replication and the induction of specific immune responses in an HBV hydrodynamic injection (HI) mouse model were investigated. The results demonstrated that two naturally occurring HBV variants, SH and SH-DPS, were identified. The variant SH-DPS expressed only a nonexportable hepatitis B virus surface antigen (HBsAg) with abnormal intracellular accumulation. The coexistence of the HBV variants at a ratio of 1 to 4 (SH to SH-DPS) increased HBV replication. Significantly stronger intrahepatic cytotoxic T lymphocyte (CTL) responses and antibody responses specific to HBsAg were induced in mice by the HBV variants when coapplied by HI. These findings uncovered an unexpected aspect of HBV quasispecies: the coexistence of different variants can significantly modulate specific host immune responses, representing a novel mechanism for the immunopathogenesis of HBV infection. IMPORTANCE Hepatitis B virus (HBV) is an important human pathogen. HBV quasispecies with genetically heterogenous variants are thought to play a role in the progression of HBV-associated liver diseases. So far, direct evidence is available in only a few cases to confirm the proposed role of HBV variants in the pathogenesis. We report here that the coexistence of two naturally occurring HBV variants at a ratio of 1 to 4 increased HBV replication and induced significantly stronger intrahepatic cytotoxic T lymphocyte responses and antibody responses specific to HBV surface antigen (HBsAg) in mice. Our discovery uncovered an unexpected aspect of HBV quasispecies: the coexistence of different variants can significantly modulate specific host immune responses and may enhance immune-mediated liver damage under some circumstances, representing a novel mechanism for the immunopathogenesis of HBV infection.


Journal of Virology | 2012

Cytosolic Phospholipase A2 Gamma Is Involved in Hepatitis C Virus Replication and Assembly

Song Xu; Rongjuan Pei; Min Guo; Qingxia Han; Juan Lai; Yun Wang; Chunchen Wu; Yuan Zhou; Mengji Lu; Xinwen Chen

ABSTRACT Similar to other positive-sense, single-stranded RNA viruses, hepatitis C virus (HCV) replicates its genome in a remodeled intracellular membranous structure known as the membranous web (MW). To date, the process of MW formation remains unclear. It is generally acknowledged that HCV nonstructural protein 4B (NS4B) can induce MW formation through interaction with the cytosolic endoplasmic reticulum (ER) membrane. Many host proteins, such as phosphatidylinositol 4-kinase IIIα (PI4KIIIα), have been identified as critical factors required for this process. We now report a new factor, the cytosolic phospholipase A2 gamma (PLA2G4C), which contributes to MW formation, HCV replication, and assembly. The PLA2G4C gene was identified as a host gene with upregulated expression upon HCV infection. Knockdown of PLA2G4C in HCV-infected cells or HCV replicon-containing cells by small interfering RNA (siRNA) significantly suppressed HCV replication and assembly. In addition, the chemical inhibitor methyl arachidonyl fluorophosphonate (MAFP), which specifically inhibits PLA2, reduced HCV replication and assembly. Electron microscopy demonstrated that MW structure formation was defective after PLA2G4C knockdown in HCV replicon-containing cells. Further analysis by immunostaining and immunoprecipitation assays indicated that PLA2G4C colocalized with the HCV proteins NS4B and NS5A in cells infected with JFH-1 and interacted with NS4B. In addition, PLA2G4C was able to transport the HCV nonstructural proteins from replication sites to lipid droplets, the site for HCV assembly. These data suggest that PLA2G4C plays an important role in the HCV life cycle and might represent a potential target for anti-HCV therapy.


Journal of Virology | 2010

The Putative Pocket Protein Binding Site of Autographa californica Nucleopolyhedrovirus BV/ODV-C42 Is Required for Virus-Induced Nuclear Actin Polymerization

Kun Li; Yun Wang; Huimin Bai; Qian Wang; Jianhua Song; Yuan Zhou; Chunchen Wu; Xinwen Chen

ABSTRACT Nuclear filamentous actin (F-actin) is essential for nucleocapsid morphogenesis of lepidopteran nucleopolyhedroviruses. Previously, we had demonstrated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-C42 (C42) is involved in nuclear actin polymerization by recruiting P78/83, an AcMNPV orf9-encoded N-WASP homology protein that is capable of activating an actin-related-protein 2/3 (Arp2/3) complex to initiate actin polymerization, to the nucleus. To further investigate the role of C42 in virus-induced actin polymerization, the recombinant bacmid vAcp78/83nls-gfp, with a c42 knockout, p78/83 tagged with a nuclear localization signal coding sequence, and egfp as a reporter gene under the control of the Pp10 promoter, was constructed and transfected to Sf9 cells. In the nuclei of vAcp78/83nls-gfp-transfected cells, polymerized F-actin filaments were absent, whereas other actin polymerization elements (i.e., P78/83, G-actin, and Arp2/3 complex) were present. This in vivo evidence indicated that C42 actively participates in the nuclear actin polymerization process as a key element, besides its role in recruiting P78/83 to the nucleus. In order to collect in vitro evidence for the participation of C42 in actin polymerization, an anti-C42 antibody was used to neutralize the viral nucleocapsid, which is capable of initiating actin polymerization in vitro. Both the kinetics of pyrene-actin polymerization and F-actin-specific staining by phalloidin indicated that anti-C42 can significantly attenuate the efficiency of F-actin formation compared to that with control antibodies. Furthermore, we have identified the putative pocket protein binding sequence (PPBS) on C42 that is essential for C42 to exert its function in nuclear actin polymerization.


Hepatology Research | 2010

Hepatitis B virus/hepatitis C virus upregulate angiopoietin‐2 expression through mitogen‐activated protein kinase pathway

Yanmei Li; Jizheng Chen; Chunchen Wu; Linding Wang; Mengji Lu; Xinwen Chen

Aim:  To explore the molecular mechanism of hepatitis B virus (HBV)/hepatitis C virus (HCV) upregulate angiopoietin‐2 (Ang‐2) expression.

Collaboration


Dive into the Chunchen Wu's collaboration.

Top Co-Authors

Avatar

Xinwen Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rongjuan Pei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuan Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xue Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mengji Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jizheng Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mengji Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kaitao Zhao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge