Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chung-Ho Lin is active.

Publication


Featured researches published by Chung-Ho Lin.


Agroforestry Systems | 1998

Shade effects on forage crops with potential in temperate agroforestry practices

Chung-Ho Lin; Robert L. McGraw; Milon F. George; Harold E. Garrett

Thirty forages, including eight introduced cool-season grasses, four native warm-season grasses, one introduced warm-season grass, eight introduced cool-season legumes, five native warm-season legumes, and four introduced warm-season legumes, were grown in 7.6 L (two gallon) pots in full sun, 50%, and 80% shade created by shade cloth over a greenhouse frame. Experiments were conducted during summer--fall 1994, spring--early summer 1995, and summer--fall 1995. A complete randomized experimental design was used and above ground dry weight was measured in each shade environment. Tukeys studentized range test was used to compare mean dry weights (MDW) within a species. Warm-season grasses displayed significant reductions in MDW under shade regardless of growing season. All cool-season forages grown during spring--early summer showed a decrease in MDW under shade; however, the reductions in dry weights of ‘Benchmark’ and ‘Justus’ orchardgrass, ‘KY 31’ tall fescue, Desmodium canescens and D. paniculatum were not significant under 50% shade. Cool-season grasses showed more shade tolerance when grown during the summer--fall than when grown during the spring--early summer. Seven of the selected cool-season grasses grown during the summer--fall did not display significant reductions in MDW under 50% shade as compared to full sun. Smooth bromegrass grown under 50% shade showed a significantly increased MDW production compared to growth in full sun. With the exception of Justus orchardgrass and smooth bromegrass, growth of cool-season grasses was inhibited at 80% shade. Among the legumes harvested during the fall, the dry weights of both Desmodium species tested and hog peanut (Amphicarpaea bracteata L.) increased significantly under 50% and 80% shade. In addition, ‘Cody’ alfalfa, white clover, slender lespedeza and ‘Kobe’ lespedeza showed no significant reductions in MDW under 50% shade.


Journal of Environmental Quality | 2008

Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification.

Chung-Ho Lin; Robert N. Lerch; Harold E. Garrett; Milon F. George

A sound multi-species vegetation buffer design should incorporate the species that facilitate rapid degradation and sequestration of deposited herbicides in the buffer. A field lysimeter study with six different ground covers (bare ground, orchardgrass, tall fescue, timothy, smooth bromegrass, and switchgrass) was established to assess the bioremediation capacity of five forage species to enhance atrazine (ATR) dissipation in the environment via plant uptake and degradation and detoxification in the rhizosphere. Results suggested that the majority of the applied ATR remained in the soil and only a relatively small fraction of herbicide leached to leachates (<15%) or was taken up by plants (<4%). Biological degradation or chemical hydroxylation of soil ATR was enhanced by 20 to 45% in forage treatment compared with the control. Of the ATR residues remaining in soil, switchgrass degraded more than 80% to less toxic metabolites, with 47% of these residues converted to the less mobile hydroxylated metabolites 25 d after application. The strong correlation between the degradation of N-dealkylated ATR metabolites and the increased microbial biomass carbon in forage treatments suggested that enhanced biological degradation in the rhizosphere was facilitated by the forages. Hydroxylated ATR degradation products were the predominant ATR metabolites in the tissues of switchgrass and tall fescue. In contrast, the N-dealkylated metabolites were the major degradation products found in the other cool-season species. The difference in metabolite patterns between the warm- and cool-season species demonstrated their contrasting detoxification mechanisms, which also related to their tolerance to ATR exposure. Based on this study, switchgrass is recommended for use in riparian buffers designed to reduce ATR toxicity and mobility due to its high tolerance and strong degradation capacity.


Journal of Environmental Quality | 2011

Reducing herbicides and veterinary antibiotics losses from agroecosystems using vegetative buffers.

Chung-Ho Lin; Robert N. Lerch; Keith W. Goyne; Harold E. Garrett

Multiple species vegetative buffer strips (VBSs) have been recommended as a cost-effective approach to mitigate agrochemical transport in surface runoff derived from agronomic operations, while at the same time offering a broader range of long-term ecological and environmental benefits. However, the effect of VBS designs and species composition on reducing herbicide and veterinary antibiotic transport has not been well documented. An experiment consisting of three VBS designs and one continuous cultivated fallow control replicated in triplicate was conducted to assess effectiveness in reducing herbicide and antibiotic transport for claypan soils. The three VBS designs include (i) tall fescue, (ii) tall fescue with a switchgrass hedge barrier, and (iii) native vegetation (largely eastern gamagrass). Rainfall simulation was used to create uniform antecedent soil moisture content in the plots and to generate runoff. Our results suggested that all VBS significantly reduced the transport of dissolved and sediment-bound atrazine, metolachlor, and glyphosate in surface runoff by 58 to 72%. Four to 8 m of any tested VBS reduced dissolved sulfamethazine transport in the surface runoff by more than 70%. The tall fescue VBS was overall most effective at reducing dissolved tylosin and enrofloxacin transport in the runoff (>75%). The developed exponential regression models can be used to predict expected field-scale results and provide design criteria for effective field implementation of grass buffers. Our study has demonstrated that an optimized VBS design may achieve desired agrochemical reductions and minimize acreage removed from crop production.


Agroforestry Systems | 2004

Incorporating forage grasses in riparian buffers for bioremediation of atrazine, isoxaflutole and nitrate in Missouri

Chung-Ho Lin; R.N. Lerch; Harold E. Garrett; Milon F. George

Multi-species tree-shrub-grass riparian buffer systems have been recognized as one of the most cost-effective bioremediation approaches to alleviate nonpoint source agricultural pollution in heavily fertilized systems. However, highly concentrated herbicides in surface and subsurface water and shade cast by trees along the stream bank usually compromise the effectiveness of these systems. Greenhouse trials and field lysimeter studies were conducted to evaluate the tolerance of orchard grass (Dactylis glomerata), smooth bromegrass (Bromus inermis), tall fescue (Festuca arundinacea), timothy (Phleum pratense), and switchgrass (Panicum virgatum) ground covers to atrazine and Balance™ (isoxaflutole) plus their capacity to sequester and degrade these herbicides and their metabolites. Their ability to remove soil nitrate was also quantified. Concentrations of atrazine, Balance™ and their metabolites in the leachate, soil and plant samples were determined by solid phase extraction followed by high performance liquid or gas chromatographic analyses. Distribution of the herbicides and metabolites in the system was calculated using a mass balance approach. Herbicide bioremediation capacity of each lysimeter treatment was determined by the ratio of metabolites to parent herbicide plus metabolites. Bioremediation of nitrate was quantified by comparing nitrate reduction rates in grass treatments to the bare ground control. Based on this herbicide tolerance, bioremediation data and shade tolerance determined in a previous study, it was established that switch grass, tall fescue and smooth bromegrass are good candidates for incorporation into tree-shrub-grass riparian buffer systems designed for the bioremediation of atrazine, Balance™ and nitrate.


Journal of Environmental Quality | 2011

Stimulated Rhizodegradation of Atrazine by Selected Plant Species

Chung-Ho Lin; Robert N. Lerch; Robert J. Kremer; Harold E. Garrett

The efficacy of vegetative buffer strips (VBS) in removing herbicides deposited from surface runoff is related to the ability of plant species to promote rapid herbicide degradation. A growth chamber study was conducted to compare C-atrazine (ATR) degradation profiles in soil rhizospheres from different forage grasses and correlate ATR degradation rates and profiles with microbial activity using three soil enzymes. The plant treatments included: (i) orchardgrass ( L.), (ii) smooth bromegrass ( Leyss.), (iii) tall fescue ( Schreb.), (iv) Illinois bundle flower (), (v) perennial ryegrass ( L.), (vi) switchgrass ( L.), and (vii) eastern gamagrass (). Soil without plants was used as the control. The results suggested that all plant species significantly enhanced ATR degradation by 84 to 260% compared with the control, but eastern gamagrass showed the highest capability for promoting biodegradation of ATR in the rhizosphere. More than 90% of ATR was degraded in the eastern gamagrass rhizosphere compared with 24% in the control. Dealkylation of atrazine strongly correlated with increased enzymatic activities of β-glucosidase (GLU) ( = 0.96), dehydrogenase (DHG) ( = 0.842), and fluorescein diacetate (FDA) hydrolysis ( = 0.702). The incorporation of forage species, particularly eastern gamagrass, into VBS designs will significantly promote the degradation of ATR transported into the VBS by surface runoff. Microbial parameters widely used for assessment of soil quality, e.g., DHG and GLU activities, are promising tools for evaluating the overall degradation potential of various vegetative buffer designs for ATR remediation.


Journal of Environmental Quality | 2013

Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.

Bei Chu; Keith W. Goyne; Stephen H. Anderson; Chung-Ho Lin; Robert N. Lerch

Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( < 0.05) influences SMZ sorption (ABS > GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil.


Communications in Soil Science and Plant Analysis | 2007

Improved GC-MS/MS method for determination of atrazine and its chlorinated metabolites in forage plants- : Laboratory and field experiments

Chung-Ho Lin; Robert N. Lerch; Harold E. Garrett; Milon F. George

Abstract Analytical procedures using gas chromatography–ion trap tandem mass spectrometry (GC‐MS/MS) were developed to analyze atrazine (ATR) and its dealkylated metabolites in four forage species (switchgrass, tall fescue, smooth bromegrass, and orchardgrass). Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were extracted with methanol (CH3OH) followed by liquid–liquid extraction and partitioning into chloroform, with additional cleanup by C18 solid‐phase extraction (SPE). Through the optimization of ionization conditions and ion storage voltages, the background noise of product ion spectra (MS/MS) was reduced dramatically, providing sub‐µg/kg detection limits. Mean recoveries of ATR, DEA, and DIA were 94.3, 105.6, and 113.1%, respectively. The estimated limit of detection (LOD) was 0.6 µg/kg for ATR, 1.3 µg/kg for DEA, and 0.3 µg/kg for DIA. These LODs were one to two orders of magnitude lower than those reported for other GC‐MS, GC‐MS/MS, high pressure liquid chromatography (HPLC)‐UV, or HPLC‐MS/MS procedures designed for food‐safety monitoring purposes. To validate the developed method, a field experiment was carried out utilizing three replications of four forage treatments (orchardgrass, tall fescue, smooth bromegrass, and switchgrass). Forage plants were sampled for analyses 25 days after atrazine application. DEA concentrations in C3 grasses ranged from 47 to 96 µg/kg, about 10‐fold higher than in switchgrass, a C4 species. The ATR and DIA concentrations were similar, ranging from 1.5 to 13.2 µg/kg. The developed method provided sufficient sensitivity to determine the fate of ATR and its chlorinated metabolites via plant uptake from soil or dealkylation within living forage grasses. It also represented significant improvements in sensitivity compared to previous GC methods.


Journal of Environmental Quality | 2016

Veterinary Antibiotic Effects on Atrazine Degradation and Soil Microorganisms.

Rebecca M. Nordenholt; Keith W. Goyne; Robert J. Kremer; Chung-Ho Lin; Robert N. Lerch; Kristen S. Veum

Veterinary antibiotics (VAs) in manure applied to agricultural lands may change agrichemical degradation by altering soil microbial community structure or function. The objectives of this study were to investigate the influence of two VAs, sulfamethazine (SMZ) and oxytetracycline (OTC), on atrazine (ATZ) degradation, soil microbial enzymatic activity, and phospholipid fatty acid (PLFA) markers. Sandy loam soil with and without 5% swine manure (w/w) was amended with 0 or 500 μg kgC radiolabeled ATZ and with 0, 100, or 1000 μg kg SMZ or OTC and incubated at 25°C in the dark for 96 d. The half-life of ATZ was not significantly affected by VA treatment in the presence or absence of manure; however, the VAs significantly ( < 0.05) inhibited ATZ mineralization in soil without manure (25-50% reduction). Manure amendment decreased ATZ degradation by 22%, reduced ATZ mineralization by 50%, and increased the half-life of ATZ by >10 d. The VAs had limited adverse effects on the microbial enzymes β-glucosidase and dehydrogenase in soils with and without manure. In contrast, manure application stimulated dehydrogenase activity and altered chlorinated ATZ metabolite profiles. Concentrations of PLFA markers were reduced by additions of ATZ, manure, OTC, and SMZ; adverse additive effects of combined treatments were noted for arbuscular mycorrhizal fungi and actinobacteria. In this work, the VAs did not influence persistence of the ATZ parent compound or chlorinated ATZ metabolite formation and degradation. However, reduced CO evolved from VA-treated soil suggests an inhibition to the degradation of other ATZ metabolites due to an altered soil microbial community structure.


Environmental Entomology | 2012

Electroantennographic Responses of the Small Chestnut Weevil Curculio sayi (Coleoptera: Curculionidae) to Volatile Organic Compounds Identified From Chestnut Reproductive Plant Tissue

Ian W. Keesey; Bruce A. Barrett; Chung-Ho Lin; Robert N. Lerch

ABSTRACT The primary insect pest of the developing chestnut industry in the central United States is the small chestnut weevil, Curculio sayi (Gyllenhal), which is a specialist on only Castanea trees. Recent research has shown this insect is attracted to and feeds upon the reproductive tissues of the chestnut tree, including the flowers, burs, and nuts. In this study, the major volatile components emanating from the chestnuts reproductive tissues were sampled using solid phase microextraction and static headspace analysis. In total, 59 compounds from these tissues were separated and identified using GC-MS and authenticated reference standards. The majority of compounds identified from the bur and nut tissues were esters (60.2 and 67.4%, respectively). The majority of compounds identified from catkins were alcohols and benzenoids (53.2 and 19.8%, respectively). A subset of those compounds identified from the chestnut plant tissues was used in electroantennogram testing to determine the insects electrophysiological response to host-generated volatiles. This study identifies the major components of the volatile profile from several important chestnut plant tissues, and was the first to report the volatile compounds from bur tissue. The identification of the major volatiles emanating from chestnut tissue, as well as the associated insect response, are both critical to the successful utilization of these host-plant volatiles as attractants in the development of a semiochemical-based monitoring trap for C. sayi adults.


Communications in Soil Science and Plant Analysis | 2007

Ability of Forage Grasses Exposed to Atrazine and Isoxaflutole to Reduce Nutrient Levels in Soils and Shallow Groundwater

Chung-Ho Lin; Robert N. Lerch; Harold E. Garrett; D. Jordan; Milon F. George

Abstract Successful implementation of vegetative buffers requires inclusion of plant species that facilitate rapid dissipation of deposited contaminants before they have a chance to be transported in surface runoff or to shallow groundwater. Thirty‐six field lysimeters with six different ground covers [bare ground, orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), smooth bromegrass (Bromus inermis Leyss.), timothy (Phleum pratense L.), and switchgrass (Panicum virgatum L.)] were established to evaluate the ability of grasses to reduce nutrient levels in soils and shallow groundwater. Nitrate (NO3 −) and orthophosphate (PO4 3−) were uniformly applied to each lysimeter. In addition, half of the lysimeters received an application of atrazine, and the other half received isoxaflutole (Balance™) at levels indicative of surface runoff from cropland. The leachate from each lysimeter was collected after major rainfall events during a 25‐day period, and soil was collected from each lysimeter at the end of the 25‐day period. Water samples were analyzed for NO3‐N and PO4‐P, and soil samples were analyzed for NO3‐N. Grass treatments reduced NO3‐N levels in leachate by 74.5 to 99.7% compared to the bare ground control, but timothy was significantly less effective at reducing NO3‐N leaching than the other grasses. Grass treatments reduced residual soil NO3‐N levels by 40.9 to 91.2% compared to the control, with tall fescue, smooth bromegrass, and switchgrass having the lowest residual levels. Switchgrass decreased PO4‐P leaching to the greatest extent, reducing it by 60.0 to 74.2% compared to the control. The ability of the forage grasses to reduce nutrient levels in soil or shallow groundwater were not significant between herbicide treatments. Quantification of microbial NO3 − dissipation rates in soil suggested that denitrification was greatest in switchgrass, smooth bromegrass, and tall fescue treatments. The overall performance of these three grasses indicated that they are the most suitable for use in vegetative buffers because of their superior ability to dissipate soil NO3 − and reduce nutrient transport to shallow groundwater.

Collaboration


Dive into the Chung-Ho Lin's collaboration.

Top Co-Authors

Avatar

Robert N. Lerch

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bei Chu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge