Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunlai Jiang is active.

Publication


Featured researches published by Chunlai Jiang.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection

Brandon F. Keele; Elena E. Giorgi; Jesus F. Salazar-Gonzalez; Julie M. Decker; Kimmy T. Pham; Maria G. Salazar; Chuanxi Sun; Truman Grayson; Shuyi Wang; Hui Li; Xiping Wei; Chunlai Jiang; Jennifer L. Kirchherr; Feng Gao; Jeffery A. Anderson; Li Hua Ping; Ronald Swanstrom; Georgia D. Tomaras; William A. Blattner; Paul A. Goepfert; J. Michael Kilby; Michael S. Saag; Eric Delwart; Michael P. Busch; Myron S. Cohen; David C. Montefiori; Barton F. Haynes; Brian Gaschen; Gayathri Athreya; Ha Y. Lee

The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.


PLOS Pathogens | 2011

Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections

S. Gnanakaran; Tanmoy Bhattacharya; Marcus Daniels; Brandon F. Keele; Peter Hraber; Alan S. Lapedes; Tongye Shen; Brian Gaschen; Mohan Krishnamoorthy; Hui-Hui Li; Julie M. Decker; Jesus F. Salazar-Gonzalez; Shuyi Wang; Chunlai Jiang; Feng Gao; Ronald Swanstrom; Jeffrey A. Anderson; Li-Hua Ping; Myron S. Cohen; Martin Markowitz; Paul A. Goepfert; Michael S. Saag; Joseph J. Eron; Charles B. Hicks; William A. Blattner; Georgia D. Tomaras; Mohammed Asmal; Norman L. Letvin; Peter B. Gilbert; Allan C. deCamp

Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.


Journal of Virology | 2011

Primary Infection by a Human Immunodeficiency Virus with Atypical Coreceptor Tropism

Chunlai Jiang; Nicholas F. Parrish; Craig B. Wilen; Hui Li; Yue Chen; Jeffrey W. Pavlicek; Anna Berg; Xiaozhi Lu; Hongshuo Song; John C. Tilton; Jennifer M. Pfaff; Elizabeth A. Henning; J. M. Decker; Ma Moody; Mark Drinker; Robert J. Schutte; Stephanie A. Freel; Georgia D. Tomaras; Rebecca Nedellec; Donald E. Mosier; Barton F. Haynes; George M. Shaw; Beatrice H. Hahn; Robert W. Doms; Feng Gao

ABSTRACT The great majority of human immunodeficiency virus type 1 (HIV-1) strains enter CD4+ target cells by interacting with one of two coreceptors, CCR5 or CXCR4. Here we describe a transmitted/founder (T/F) virus (ZP6248) that was profoundly impaired in its ability to utilize CCR5 and CXCR4 coreceptors on multiple CD4+ cell lines as well as primary human CD4+ T cells and macrophages in vitro yet replicated to very high titers (>80 million RNA copies/ml) in an acutely infected individual. Interestingly, the envelope (Env) glycoprotein of this clade B virus had a rare GPEK sequence in the crown of its third variable loop (V3) rather than the consensus GPGR sequence. Extensive sequencing of sequential plasma samples showed that the GPEK sequence was present in virtually all Envs, including those from the earliest time points after infection. The molecularly cloned (single) T/F virus was able to replicate, albeit poorly, in cells obtained from ccr5 Δ32 homozygous donors. The ZP6248 T/F virus could also infect cell lines overexpressing the alternative coreceptors GPR15, APJ, and FPRL-1. A single mutation in the V3 crown sequence (GPEK->GPGK) of ZP6248 restored its infectivity in CCR5+ cells but reduced its ability to replicate in GPR15+ cells, indicating that the V3 crown motif played an important role in usage of this alternative coreceptor. These results suggest that the ZP6248 T/F virus established an acute in vivo infection by using coreceptor(s) other than CCR5 or CXCR4 or that the CCR5 coreceptor existed in an unusual conformation in this individual.


Viruses | 2014

Identification of Luteolin as Enterovirus 71 and Coxsackievirus A16 Inhibitors through Reporter Viruses and Cell Viability-Based Screening

Lin Xu; Weiheng Su; Jun Jin; Jiawen Chen; Xiaojun Li; Xuyuan Zhang; Meiyan Sun; Shiyang Sun; Peihu Fan; Dong An; Huafei Zhang; Xiguang Zhang; Wei Kong; Tonghui Ma; Chunlai Jiang

Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability‑based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 μM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs.


PLOS ONE | 2014

Analysis of Cross-Reactive Neutralizing Antibodies in Human HFMD Serum with an EV71 Pseudovirus-Based Assay

Huafei Zhang; Dong An; Wei Liu; Qunying Mao; Jun Jin; Lin Xu; Shiyang Sun; Liping Jiang; Xiaojun Li; Jie Shao; Hongxia Ma; Xueyong Huang; Shijie Guo; Haiying Chen; Tong Cheng; Lisheng Yang; Weiheng Su; Wei Kong; Zhenglun Liang; Chunlai Jiang

Hand, foot and mouth disease, associated with enterovirus 71 (EV71) infections, has recently become an important public health issue throughout the world. Serum neutralizing antibodies are major indicators of EV71 infection and protective immunity. However, the potential for cross-reactivity of neutralizing antibodies for different EV71 genotypes and subgenotypes is unclear. Here we measured the cross-reactive neutralizing antibody titers against EV71 of different genotypes or subgenotypes in sera collected from EV71-infected children and vaccine-inoculated children in a phase III clinical trial (ClinicalTrials.gov Identifier: NCT01636245) using a new pseudovirus-based neutralization assay. Antibodies induced by EV71-C4a were cross-reactive for different EV71 genotypes, demonstrating that C4a is a good candidate strain for an EV71 vaccine. Our study also demonstrated that this new assay is practical for analyses of clinical samples from epidemiological and vaccine studies.


Molecular Immunology | 2012

A novel disulfide-stabilized single-chain variable antibody fragment against rabies virus G protein with enhanced in vivo neutralizing potency

Ye Duan; Tiejun Gu; Chunlai Jiang; Ruosen Yuan; Huafei Zhang; Hongjia Hou; Xianghui Yu; Yan Chen; Yong Zhang; Yongge Wu; Wei Kong

Rabies is a fatal infectious disease requiring efficient protection provided by post-exposure prophylaxis (PEP) with rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv) is a small engineered antigen binding protein derived from antibody variable heavy (V(H)) and light (V(L)) chains. This novel antibody format may potentially replace the current application of RIG to detect and neutralize rabies virus (RV). However, the broad use of scFvs is confined by their generally low stability. In this study, a scFv (FV57) was constructed based on the monoclonal antibody, MAB57, against RV. To enhance its stability and neutralizing potency, a disulfide-stabilized scFv, ds-FV57, was also derived by introduction of cysteines at V(H)44 and V(L)100. Furthermore, the cysteine at V(L)85 of ds-FV57 was mutated to serine to construct ds-FV57(VL85Ser) in order to avoid potential mis-formed disulfide bonds which would alter the affinity of the scFv. The stability and activity of all three proteins expressed in Escherichia coli were evaluated. All of the constructed scFvs could provide efficient protection against RV infection both in vivo and in vitro. However, the stability of ds-FV57(VL85Ser) was notably improved, and its in vitro neutralizing potency against RV infection was enhanced. Our findings from these stabilization modifications support the feasibility of developing scFvs for PEP treatment of rabies.


PLOS ONE | 2015

Hepatitis E Virus Produced from Cell Culture Has a Lipid Envelope

Ying Qi; Feng Zhang; Li Zhang; Tim J. Harrison; Weijin Huang; Chenyan Zhao; Wei Kong; Chunlai Jiang; Youchun Wang

The absence of a productive cell culture system hampered detailed analysis of the structure and protein composition of the hepatitis E virion. In this study, hepatitis E virus from a robust HEV cell culture system and from the feces of infected monkeys at the peak of virus excretion was purified by ultra-centrifugation. The common feature of the two samples after ultracentrifugation was that the ORF2 protein mainly remained in the top fractions. The ORF2 protein from cell culture system was glycosylated, with an apparent molecular weight of 88 kDa, and was not infectious in PLC/PRF/5 cells. The ORF2 protein in this fraction can bind to and protect HEV RNA from digestion by RNase A. The RNA-ORF2 product has a similar sedimentation coefficient to the virus from feces. The viral RNA in the cell culture supernatant was mainly in the fraction of 1.15g/cm3 but that from the feces was mainly in the fraction of 1.21 g/cm3. Both were infectious in PLC/PRF/5 cells. And the fraction in the middle of the gradient (1.06g/cm3) from the cell culture supernatant,but not that from the feces, also has ORF2 protein and HEV RNA but was not infectious in PLC/PRF/5.The infectious RNA-rich fraction from the cell culture contained ORF3 protein and lipid but the corresponding fraction from feces had no lipid and little ORF3 protein. The lipid on the surface of the virus has no effect on its binding to cells but the ORF3 protein interferes with binding. The result suggests that most of the secreted ORF2 protein is not associated with HEV RNA and that hepatitis E virus produced in cell culture differs in structure from the virus found in feces in that it has a lipid envelope.


Virology Journal | 2013

Establishment of cell lines with increased susceptibility to EV71/CA16 by stable overexpression of SCARB2

Xiaojun Li; Peihun Fan; Jun Jin; Weiheng Su; Dong An; Lin Xu; Shiyang Sun; Yan Zhang; Xiangyu Meng; Feng Gao; Wei Kong; Chunlai Jiang

BackgroundHuman enterovirus type 71 (EV71) and Coxsackievirus A group type 16 (CA16) belong to human Enterovirus species A of the family Picornaviridae. These viruses are recognized as the major pathogens responsible for epidemics of hand-foot-mouth disease (HFMD), which presents with fever and vesicular eruptions of palms, soles of the feet or mouth. Human scavenger receptor class B, member 2 (SCARB2) has been identified as the receptor for both EV71 and CA16, as overexpression of SCARB2 in cells can enhance virus replication significantly.MethodsIn this study, we used a lentivirus packaging vector to transduce the SCARB2 gene into human embryonic kidney cells (293), human rhabdomyosarcoma cells (RD) and African green monkey kidney cells (Vero) to create stable expression lines. Expression of SCARB2 in the resulting three transgenic cell lines was confirmed by real-time RT-PCR, immunofluorescence and flow cytometry.ResultsLevels of SCARB2 mRNA determined by real-time RT-PCR in 293-SCARB2 (293S) or RD-SCARB2 (RDS) transgenic cell lines were approximately 2 × 102 times higher than those in 293 and RD cells, respectively, and three times higher in Vero-SCARB2 (VeroS) than in Vero cells. Furthermore, EV71 and CA16 virus titers in 293S and RDS cells were 102–103-fold higher (detected in RD cell) than those in the parental cells, and a 10-fold higher titer of EV71 was achieved in VeroS cells compared with that in Vero cells.ConclusionsWe established for the first time three cell lines stably overexpressing SCARB2, which showed drastic increases in susceptibility to EV71/CA16 infection. These optimal cell lines may be utilized to develop inactivated vaccines for EV71/CA16 and facilitate rapid detection and isolation of HFMD pathogens or other Enterovirus serotypes. Furthermore, these stable cell lines also can serve as tools to facilitate drug screenings as well as molecular studies on virus-host interactions and pathogenesis of causative agents for HFMD.


Amino Acids | 2012

Improvement of enzymatic stability and intestinal permeability of deuterohemin-peptide conjugates by specific multi-site N-methylation

Qingguang Dong; Yong Zhang; Mengshu Wang; Jiao Feng; Haihong Zhang; Yongge Wu; Tiejun Gu; Xianghui Yu; Chunlai Jiang; Yan Chen; Wei Li; Wei Kong

The deuterohemin-peptide conjugate, DhHP-6 (Dh-β-AHTVEK-NH2), is a microperoxidase mimetic, which has demonstrated substantial benefits in vivo as a scavenger of reactive oxygen species (ROS). In this study, specific multi-site N-methylated derivatives of DhHP-6 were designed and synthesized to improve metabolic stability and intestinal absorption, which are important factors for oral delivery of therapeutic peptides and proteins. The DhHP-6 derivatives were tested for (1) scavenging potential of hydrogen peroxide (H2O2); (2) permeability across Caco-2 cell monolayers and everted gut sacs; and (3) enzymatic stability in serum and intestinal homogenate. The results indicated that the activities of the DhHP-6 derivatives were not influenced by N-methylation, and that tri-N-methylation of DhHP-6 could significantly increase intestinal flux, resulting in a two- to threefold higher apparent permeability coefficient. In addition, molecules with N-methylation at selected sites (e.g., Glu residue) showed high resistance against proteolytic degradation in both diluted serum and intestinal preparation, with 50- to 140-fold higher half-life values. These findings suggest that the DhHP-6 derivatives with appropriate N-methylation could retain activity levels equivalent to that of the parent peptide, while showing enhanced intestinal permeability and stability against enzymatic degradation. The tri-N-methylated peptide Dh-β-AH(Me)T(Me)V(Me)EK-NH2 derived from this study may be developed as a promising candidate for oral administration.


Scandinavian Journal of Immunology | 2012

Subcutaneous Administration of Modified Vaccinia Virus Ankara Expressing an Ag85B-ESAT6 Fusion Protein, but Not an Adenovirus-Based Vaccine, Protects Mice Against Intravenous Challenge with Mycobacterium tuberculosis

Qingrui You; Chunlai Jiang; Yongge Wu; Xianghui Yu; Yan Chen; Xizhen Zhang; Wei Wei; Yong Wang; Zhijiao Tang; Dehua Jiang; Changyong Wang; X. Meng; X. Zhao; Wei Kong

Recombinant virus‐based tuberculosis (TB) vaccines that are strongly immunogenic and elicit robust cellular immunity are considered ideal vaccine candidates. Here, we engineered a poxvirus‐based vaccine, MVA85B‐E6, and an adenovirus‐based vaccine, AD85B‐E6, both of which express the fusion protein Ag85B‐ESAT6. Subcutaneous vaccination of AD85B‐E6 generated strong interferon (IFN)‐γ production by both CD4 and CD8 T cells and CD8 cytotoxic T lymphocyte activity; these results indicate that strong T‐helper type 1 immune responses were elicited in mice, which is in contrast to the moderate responses induced by vaccination with MVA85B‐E6. However, MVA85B‐E6 given subcutaneously led to levels of protection comparable with that induced by the bacillus Calmette–Guérin vaccine in the lungs and spleens, whereas AD85B‐E6 given subcutaneously did not show any protective efficacy after intravenous challenge of BALB/c mice with Mycobacterium tuberculosis H37Rv. Our study emphasizes that more efficient biomarkers for vaccine efficacy and more appropriate routes of vaccine administration are necessary for the development of a successful TB vaccine.

Collaboration


Dive into the Chunlai Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge