Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunling Bai is active.

Publication


Featured researches published by Chunling Bai.


Scientific Reports | 2016

Establishment of bovine embryonic stem cells after knockdown of CDX2.

Xia Wu; Miao Song; Xi Yang; Xin Liu; Kun Liu; Cuihua Jiao; Jinze Wang; Chunling Bai; Guanghua Su; Xuefei Liu; Guangpeng Li

Bovine embryonic stem cells (bESCs) have not been successfully established yet. One reason could be that CDX2, as the trophectoderm regulator, expresses in bovine inner cell mass (ICM), which probably becomes a technical barrier for maintaining the pluripotency of bESCs in vitro. We hypothesized that CDX2 knockdown (CDX2-KD) could remove such negative effort, which will be helpful for capturing complete and permanent capacity of pluripotency. Expression and localization of pluripotent genes were not affected in CDX2-KD blastocysts. The CDX2-KD bESCs grew into monolayers on feeder layer. Pluripotent genes expressed at an improved levels and lasted longer time in CDX2-KD bESCs, along with down-regulation of DNA methylation on promoters of both OCT4 and SOX2. The cystic structure typical for trophoblast cells did not show during culturing CDX2-KD bESCs. CDX2-KD bESC-derived Embryoid bodies showed with compact morphology and with the improved levels of differentiations in three germ layers. CDX2-KD bESCs still carried the capacity of forming teratomas with three germ layers after long-term culture. In summary, CDX2 in bovine ICM was inducer of trophoblast lineage with negative effect on maintenance of pluripotency of bESCs. Precise regulation CDX2 expression to switch on/off will be studied next for application on establishment of bESCs.


Fertility and Sterility | 2015

MicroRNAome in decidua: a new approach to assess the maintenance of pregnancy

Yu Wang; Yang Lv; Liyan Wang; Chunling Gong; Jiajia Sun; Xiujuan Chen; Yan Chen; Lei Yang; Yan Zhang; Xukui Yang; Chunling Bai; Zhuying Wei; Guangpeng Li

OBJECTIVE To comparatively analyze the human microRNAomes between normal pregnant and miscarriage deciduas by an in-depth sequencing of microRNA (miRNA); and to specifically examine miRNA-199b-5p and serum/glucocorticoid regulated kinase 1 (SGK1) in vivo and in vitro for their possible roles in pregnancy maintenance. DESIGN Samples of deciduas from 6-8-week spontaneous miscarriages and normal pregnant women were irrespectively collected and comparatively analyzed by miRNA sequencing. The miR-199b-5p and SGK1 expressions were validated in vivo and in vitro. SETTING University research and clinical institutes. PATIENT(S) In this experimental study, samples of deciduas were obtained from October 2011 to April 2012 from 29 women with spontaneous miscarriages and 35 normal pregnant women (control group) who underwent pregnancy termination at 6-8 weeks at our university gynecology unit. INTERVENTION(S) Endometrial biopsies, cell transfection, and production of an miR-199b-5p transgenic mouse model. MAIN OUTCOME MEASURE(S) In-depth sequencing of the miRNAome on human deciduas was performed for statistically significant differences in miRNA expression. Expression levels of SGK1 were detected by quantitative polymerase chain reaction and immunoblotting (Western blot) in vitro while miR-199b-5p is overexpressed or knockdown in miR-199b-5p transgenic mice. RESULT(S) Expression of the 1,921 known miRNAs was analyzed in the study. In aborted deciduas, 0.57% of the miRNAs were expressed abundantly (>10,000 transcripts per million) and represented 86.38% of all the miRNA reads. Six miRNAs were down-regulated (let-7a-5p, let-7f-5p, let-7g-5p, let-7e-5p, let-7d-5p, and miR-98), whereas miR-199b-5p was significantly up-regulated. Overexpression or knockdown of miR-199b-5p in HEK293T and Ishikawa cells decreased or increased SGK1 expression. Furthermore, overexpression of miR-199b-5p in human endometrial stromal cells or in transgenic mouse decreased SGK1 expression at the mRNA and protein levels, respectively. CONCLUSION(S) Among the miRNAomes, the abundant expression of the let-7 members was decreased in aborted samples, whereas miR-199b-5p expression was consistently increased. A significant inverse correlation was found between miR-199b-5p and SGK1 in vivo and in vitro.


BMC Genomics | 2014

Irregular transcriptome reprogramming probably causes thec developmental failure of embryos produced by interspecies somatic cell nuclear transfer between the Przewalski’s gazelle and the bovine

Yongchun Zuo; Yu Gao; Guanghua Su; Chunling Bai; Zhuying Wei; Kun Liu; Qian-Zhong Li; Shorgan Bou; Guangpeng Li

BackgroundInterspecies somatic cell nuclear transfer (iSCNT) has been regarded as a potential alternative for rescuing highly endangered species and can be used as a model for studying nuclear–cytoplasmic interactions. However, iSCNT embryos often fail to produce viable offspring. The alterations in normal molecular mechanisms contributing to extremely poor development are for the most part unknown.ResultsPrzewalski’s gazelle–bovine iSCNT embryos (PBNT) were produced by transferring Przewalski’s gazelle fibroblast nuclei into enucleated bovine oocytes. The percentages of PBNT embryos that developed to morula/blastocyst stages were extremely low even with the use of various treatments that included different SCNT protocols and treatment of embryos with small molecules. Transcriptional microarray analyses of the cloned embryos showed that the upregulation of reprogramming-associated genes in bovine–bovine SCNT (BBNT) embryos was significantly higher than those observed in PBNT embryos (1527:643). In all, 139 transcripts related to various transcription regulation factors (TFs) were unsuccessfully activated in the iSCNT embryos. Maternal degradation profiles showed that 1515 genes were uniquely downregulated in the BBNT embryos, while 343 genes were downregulated in the PBNT embryos. Incompatibilities between mitochondrial DNA (mtDNA) and nuclear DNA revealed that the TOMM (translocase of outer mitochondrial membrane)/TIMM (translocase of inner mitochondrial membrane) complex-associated genes in BBNT embryos had the highest expression levels, while the PBNT embryos exhibited much lower expression rates.ConclusionsImproper degradation of maternal transcripts, incomplete activation of TFs and abnormal expression of genes associated with mitochondrial function in PBNT embryos likely contributed to incomplete reprogramming of the donor cell nuclei and therefore led to the developmental failure of these cloned embryos.


Experimental Cell Research | 2017

Induced MiR-1249 expression by aberrant activation of Hedegehog signaling pathway in hepatocellular carcinoma

Yibiao Ye; Yunping Wei; Yunxiuxiu Xu; Yanshan Li; Ruomei Wang; Jie Chen; Yu Zhou; Zhiqiang Fu; Yan Chen; Xin Wang; Ruiping Yu; Chunling Bai; Guangpeng Li; Rufu Chen; Tao Chen

ABSTRACT Aberrant activations of Hedegehog (Hh) signaling were found in hepatocellular carcinoma (HCC) and some other cancer types. However, the details have not been completely understood and the underlying mechanism remains unclear. Here we reported that miR‐1249 transcription in HCC cells was regulated through direct binding to the conserved sequences in miR‐1249 promoter region by Gli1, which functions as a transcription factor and is a component in the Hh signaling pathway. Interestingly, expression of tumor suppressor PTCH1, which is another component of the Hh signaling pathway, was inhibited by miR‐1249 through targeting its 3′‐untranslated region. Down‐regulation of PTCH1 further enhanced the downstream effects mediated by Gli1. In consistent with these findings, miR‐1249 expression level was correlated with degree of prognosis (p=0.005) in HCC patients. Taken together, our results suggested the existence of a positive feedback loop comprised of Gli1, miR‐1249 and PTCH1. During the process of HCC progression, this positive feedback loop could be continuously activated to enhance tumor cell growth, migration and invasion. HIGHLIGHTSMiR‐1249 was transcription regulated by Gli1 and promoting progression of HCC.PTCH1 was a target gene of miR‐1249.Exists a positive feedback loop comprised of Gli1, miR‐1249 and PTCH1 in HCC.MiR‐1249 was overexpression in HCC and associated with poor prognosis.


Cellular Reprogramming | 2010

In Vitro Development and Chromosomal Configuration of Bovine Somatic Cloned Embryos with Nonenucleated Metaphase II Oocytes

Qinggang Meng; Chunling Bai; Ying Liu; Xia Wu; Thomas D. Bunch; Guang-Peng Li

This study was designed to examine the effects of the presence of oocyte nuclei on the donor cell nuclear remodeling, including premature chromosome condensation (PCC) and DNA configuration, and subsequent embryo development. The results showed that: (1) the presence of oocyte MII spindles was more likely to induce donor cell PCC. (2) The positional relationship between the fused donor cell and the oocyte metaphase spindle had an effect on oocyte PB2 extrusion. When the fused donor cell was widely separated from the MII spindle, 94.4% of the reconstructed oocytes expelled a PB2. When the donor cell was fused adjacently to the MII spindle, almost all of the reconstructed oocytes did not expel the PB2; the majority (67.9%) formed a very large M-phase spindle in which the oocyte and the donor cell chromosomes merged. (3) After activation, the oocyte and donor nuclei exhibited a variety of pronuclear patterns and asynchronous development. (4) The embryos reconstituted with nonenucleated oocytes resulted in a similar cleavage rate as observed in the control embryos reconstituted with enucleated oocytes. Blastocyst developmental rates were no different between nonenucleated and enucleated cloned embryos; however, the development rates from early to hatching blastocysts significantly decreased in the nonenucleation group compared to enucleation controls (0 vs. 23.1%; 27.5 vs. 67.8%), regardless with either cumulus cells or fibroblasts as donor cells. (5) All nonenucleated oocyte-derived blastocysts contained mixed polyploidy with a variety of compositions that included 2n/4n, 2n/6n, 2n/8n, and 2n/4n/8n. (6) Nuclear transfer preceding the oocyte enucleation experiment indicated that prolonged presence of oocyte nuclei induced abnormal DNA configuration and reduced in vitro development of transferred somatic nuclei, but short time presence of oocyte nuclei did not affect the in vitro development of cloned embryos. We conclude that oocyte MII spindles induce donor cell PCC, the developmental capacity of cloned embryos reconstituted with nonenucleated oocytes is inferior to those with enucleated oocytes, and that all such derived blastocysts are polyploidy.


Scientific Reports | 2016

The Maternal Effect Genes UTX and JMJD3 Play Contrasting Roles in Mus musculus Preimplantation Embryo Development

Lei Yang; Lishuang Song; Xuefei Liu; Qing Xia; Lige Bai; Li Gao; Guangqi Gao; Yu Wang; Zhuying Wei; Chunling Bai; Guangpeng Li

During the process of embryonic development in mammals, epigenetic modifications must be erased and reconstructed. In particular, the trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcriptional repression and contributes to the maintenance of the pluripotent embryos. In this study, we determined that the global levels of the H3K27me3 marker were elevated in MII oocyte chromatin and decrease to minimal levels at the 8-cell and morula stages. When the blastocyst hatched, H3K27me3 was re-established in the inner cell mass. We also determined that H3K27me3-specific demethylases, UTX and JMJD3, were observed at high transcript and protein levels in mouse preimplantation embryos. In the activated oocytes, when the H3K27me3 disappeared at the 8-cell stage, the UTX (but not JMJD3) protein levels were undetectable. Using RNA interference, we suppressed UTX and JMJD3 gene expression in the embryos and determined that the functions of UTX and JMJD3 were complementary. When JMJD3 levels were decreased by RNA interference, the embryo development rate and quality were improved, but the knockdown of UTX produced the opposite results. Understanding the epigenetic mechanisms controlling preimplantation development is critical to comprehending the basis of embryonic development and to devise methods and approaches to treat infertility.


Animal Reproduction Science | 2011

Nuclear transfer procedures in the ovine can induce early embryo fragmentation and compromise cloned embryo development

Lian Xue; Lei Cheng; Guanghua Su; Feng Kang; Xia Wu; Chunling Bai; Li Zhang; Guang-Peng Li

Cytoplasmic fragmentations are frequently observed in early mammalian embryos, and especially in the human. In our research we have observed subtle clues that the occurrence of fragmentation was most likely a result of somatic cell nuclear transfer (NT) protocols, and in particular, the in vitro culture system. In this study we examined various putative factors that might induce early embryo fragmentation in the ovine. The results indicate that nuclear transfer protocols such as the fusion parameter, activation treatment, and especially the choice of culture medium affected embryo cleavage rates and resulted in a higher incidence of fragmented embryos. Upon using the same fusion parameter, activation parameters that were based upon amino acids containing synthetic oviduct fluids (SOFaa) culture system resulted in significantly lower fragmentation rates than when utilizing a Charles Rosenkrans 1 (CR1aa) culture system. Fragmented embryos typically exhibited irregular numbers of blastomeres with the majority of blastomeres devoid of chromatin. Factors such as fusion DC pulse, activation treatment and culture system led to higher fragmentation and also affected in vitro and in vivo embryo development. The SOFaa based culture system produced a higher number of quality NT embryos resulting in higher pregnancy rates and the birth of live lambs as compared to the CR1aa based system (P<0.05). We conclude that early embryo fragmentation in the ovine is caused by suboptimal cloning protocols, and NT embryo development is especially affected by the culture system used.


PLOS ONE | 2017

DNMT 1 maintains hypermethylation of CAG promoter specific region and prevents expression of exogenous gene in fat-1 transgenic sheep

Chunrong Yang; Xueying Shang; Lei Cheng; Lei Yang; Xuefei Liu; Chunling Bai; Zhuying Wei; Jinlian Hua; Guang-Peng Li

Methylation is an important issue in gene expression regulation and also in the fields of genetics and reproduction. In this study, we created fat-1 transgenic sheep, investigated the fine-mapping and the modulatory mechanisms of promoter methylation. Sheep fetal fibroblasts were transfected by pCAG-fat1-IRES-EGFP. Monoclonal cell line was screened as nuclear donor and carried out nuclear transfer (441 transgenic cloned embryos, 52 synchronism recipient sheep). Six offsprings were obtained. Expressions of exogenous genes fat-1 and EGFP were detectable in 10 examined tissues and upregulated omega-3 fatty acid content. Interestingly, more or less EGFP negative cells were detectable in the positive transgenic fetal skin cells. EGFP negative and positive cells were sorted by flow cytometry, and their methylation status in the whole promoter region (1701 nt) were investigated by bisulphate sequencing. The fine-mapping of methylation in CAG promoter were proposed. The results suggested that exogenous gene expression was determined by the methylation status from 721–1346 nt and modulated by methylation levels at 101, 108 and 115 nt sites in CAG promoter. To clarify the regulatory mechanism of methylation, examination of four DNA methyltransferases (DNMTs) demonstrated that hypermethylation of CAG promoter is mainly maintained by DNMT 1 in EGFP negative cells. Furthermore, investigation of the cell surface antigen CD34, CD45 and CD166 indicated that EGFP positive and negative cells belong to different types. The present study systematically clarified methylation status of CAG promoter in transgenic sheep and regulatory mechanism, which will provide research strategies for gene expression regulation in transgenic animals.


PLOS ONE | 2013

SGO1 Maintains Bovine Meiotic and Mitotic Centromeric Cohesions of Sister Chromatids and Directly Affects Embryo Development

Fengxia Yin; Guang-Peng Li; Chunling Bai; Yang Liu; Zhuying Wei; Cheng-Guang Liang; Thomas D. Bunch; Linsen Zan

Shugoshin (SGO) is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s) in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV) to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s) of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.


Frontiers of Agricultural Science and Engineering | 2016

Matrix attachment regions included in a bicistronic vector enhances and stabilizes follistatin gene expressions in both transgenic cells and transgenic mice

Xiaoming Hu; Jing Guo; Chunling Bai; Zhuying Wei; Li Gao; Tingmao Hu; Shorgan Bou; Guangpeng Li

In the present study, follistatin (FST) gene expression vectors with either a bicistronic gene transfer cassette alone, or a bicistron gene cassette carrying a matrix attachment region (MAR) were constructed and transfected to bovine fetal fibroblasts. Evaluations of both the integration and expression of exogenous FST indicated that the pMAR-CAG-FST-IRES-AcGFP1-polyA-MAR (pMAR-FST) vector had higher capacity to form mono- clonal transgenic cells than the vector without MAR, though transient transfection and integration efficiency were similar with either construct. Remarkably, protein expression in transgenic cells with the pMAR-FST vector was significantly higher than that from the bicistronic vector. Exogenous FST was expressed in all of the pMAR- FST transgenic mice at F0 ,F 1 and F2. Total muscle growth in F0 mice was significantly greater than in wild-type mice, with larger muscles in fore and hind limbs of transgenic mice. pMAR-FST transgenic mice were also found with more evenly distributed muscle bundles and thinner spaces between sarcolemma, which suggests a correlation between transgene expression-associated muscle develop- ment and the trend of muscle growth. In conclusion, a pMAR-FST vector, which excluded the resistant genes and frame structure, enhances and stabilizes FST gene expressions in both transfected cells and transgenic mice.

Collaboration


Dive into the Chunling Bai's collaboration.

Top Co-Authors

Avatar

Zhuying Wei

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Guangpeng Li

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Xia Wu

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Lei Cheng

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Guanghua Su

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guang-Peng Li

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Kun Liu

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Lei Yang

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Xuefei Liu

Inner Mongolia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge