Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuefei Liu is active.

Publication


Featured researches published by Xuefei Liu.


Hypertension | 2011

Gene Transfer of Neuronal Nitric Oxide Synthase to the Paraventricular Nucleus Reduces the Enhanced Glutamatergic Tone in Rats With Chronic Heart Failure

Hong Zheng; Xuefei Liu; Yifan Li; Neeru M. Sharma; Kaushik P. Patel

Our previous studies have shown that the decreased NO and increased glutamatergic mechanisms on sympathetic regulation within the paraventricular nucleus (PVN) may contribute to the elevated sympathoexcitation during chronic heart failure (CHF). In the present study, we investigated the effects of neuronal NO synthase (nNOS) gene transfer on N-methyl-D-aspartic acid receptor subunit NR1 in the rats with a coronary ligation model of CHF. Adenovirus vectors encoding nNOS (AdnNOS) or adenovirus vectors encoding &bgr;-galactosidase were transfected into the PVN in vivo. Five days after application of AdnNOS, the increased expression of nNOS within the PVN was confirmed by NADPH-diaphorase staining, real-time PCR, and Western blot. In anesthetized rats, AdnNOS treatment significantly enhanced the blunted renal sympathetic nerve activity, blood pressure, and heart rate responses to NO synthase inhibitor NG-monomethyl-L-arginine in the rats with CHF compared with CHF-adenovirus vectors encoding &bgr;-galactosidase group. AdnNOS significantly decreased the enhanced renal sympathetic nerve activity, blood pressure, and heart rate responses to N-methyl-D-aspartic acid in the rats with CHF (renal sympathetic nerve activity: 44±2% versus 79±6%; P<0.05) compared with CHF-adenovirus vectors encoding the &bgr;-galactosidase group. AdnNOS transfection significantly reduced the increased NR1 receptor mRNA expression (&Dgr;35±5%) and protein levels (&Dgr;24±4%) within the PVN in CHF rats. Furthermore, in neuronal NG-108 cells, NR1 receptor protein expression decreased in a dose-dependent manner after AdnNOS transfection. According to our results, nNOS downregulation enhances glutamate transmission in the PVN by increasing NR1 subunit expression. This mechanism may enhance renal sympathetic nerve activity in CHF rats.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Median Preoptic Nucleus and Subfornical Organ Drive Renal Sympathetic Nerve Activity via a Glutamatergic Mechanism within the Paraventricular Nucleus

Tamara Llewellyn; Hong Zheng; Xuefei Liu; Bo Xu; Kaushik P. Patel

The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA - ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% (P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II - ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Angiotensin-converting enzyme 2 overexpression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure

Hong Zheng; Xuefei Liu; Kaushik P. Patel

Angiotensin (ANG)-converting enzyme (ACE)2 in brain regions such as the paraventricular nucleus (PVN) controlling cardiovascular function may be involved in the regulation of sympathetic outflow in chronic heart failure (CHF). The purpose of this study was to determine if ACE2 plays a role in the central regulation of sympathetic outflow by regulating neuronal nitric oxide (NO) synthase (nNOS) in the PVN. We investigated ACE2 and nNOS expression within the PVN of rats with CHF. We then determined the effects of ACE2 gene transfer in the PVN on the contribution of NO-mediated sympathoinhibition in rats with CHF. The results showed that there were decreased expressions for ACE2, the ANG-(1-7) receptor, and nNOS within the PVN of rats with CHF. After the application of adenovirus vectors encoding ACE2 (AdACE2) into the PVN, the increased expression of ACE2 in the PVN was confirmed by Western blot analysis. AdACE2 transfection significantly increased nNOS protein levels (change of 50 ± 5%) in the PVN of CHF rats. In anesthetized rats, AdACE2 treatment attenuated the responses of renal sympathetic nerve activity (RSNA), mean arterial pressure, and heart rate to the NOS inhibitor N-monomethyl-L-arginine in rats with CHF (RSNA: 28 ± 3% vs. 16 ± 3%, P < 0.05) compared with CHF + AdEGFP group. Furthermore, neuronal NG-108 cells incubated with increasing doses of AdACE2 showed a dose-dependent increase in nNOS protein expression (60% at the highest dose). Taken together, our data highlight the importance of increased expression and subsequent interaction of ACE2 and nNOS within the PVN, leading to a reduction in sympathetic outflow in the CHF condition.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II

Hong Zheng; Neeru M. Sharma; Xuefei Liu; Kaushik P. Patel

Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the underlying mechanisms are not known. We hypothesized ExT would normalize the augmented activation of the paraventricular nucleus (PVN) via an angiotensinergic mechanism during HF. Four groups of rats used were the following: 1) sham-sedentary (Sed); 2) sham-ExT; 3) HF-Sed, and 4) HF-ExT. HF was induced by left coronary artery ligation. Four weeks after surgery, 3 wk of treadmill running was performed in ExT groups. The number of FosB-positive cells in the PVN was significantly increased in HF-Sed group compared with the sham-Sed group. ExT normalized (negated) this increase in the rats with HF. In anesthetized condition, the increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) in response to microinjection of angiotensin (ANG) II (50∼200 pmol) in the PVN of HF-Sed group were significantly greater than of the sham-Sed group. In the HF-ExT group the responses to microinjection of ANG II were not different from sham-Sed or sham-ExT groups. Blockade of ANG II type 1 (AT(1)) receptors with losartan in the PVN produced a significantly greater decrease in RSNA, MAP, and HR in HF-Sed group compared with sham-Sed group. ExT prevented the difference between HF and sham groups. AT(1) receptor protein expression was increased 50% in HF-Sed group compared with sham-Sed group. In the HF-ExT group, AT(1) receptor protein expression was not significantly different from sham-Sed or sham-ExT groups. In conclusion, one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of angiotensinergic mechanisms within the PVN.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Activation of afferent renal nerves modulates RVLM-projecting PVN neurons

Bo Xu; Hong Zheng; Xuefei Liu; Kaushik P. Patel

Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Exercise training normalizes the blunted central component of the baroreflex in rats with heart failure: role of the PVN

Kaushik P. Patel; Helio Cesar Salgado; Xuefei Liu; Hong Zheng

Exercise training (ExT) normalizes the increased sympathetic outflow in chronic heart failure (HF). The underlying mechanisms are not clearly understood. We hypothesized that ExT normalized the blunted central component of the baroreflex control of renal sympathetic nerve activity (RSNA) in HF. Four groups of rats [sham operated (sham)-sedentary (Sed), sham-ExT, HF-Sed, and HF-ExT] were used. HF was induced by left coronary artery ligation, and ExT consisted of 3 wk of treadmill running. In anesthetized rats, the decrease in RSNA in response to aortic depressor nerve stimulation (5-40 Hz) in the HF-Sed group was significantly lower than that in the sham-Sed group (-37 ± 7% vs. -63 ± 8% at 40 Hz, P < 0.05). In the HF-ExT group, responses in RSNA, mean arterial pressure (MAP), and heart rate (HR) were not significantly different from those in the sham-Sed or sham-ExT groups. ExT normalized blunted RSNA, MAP, and HR responses to bicuculline microinjections into the paraventricular nucleus (PVN) in rats with HF. Activation of the PVN by blockade of GABA receptors with bicuculline in normal control rats blunted the centrally component of the baroreflex arc. GABAA-α1 and -β1 receptor protein expression were significantly lower (by 48% and 30%) in the HF-Sed group, but ExT normalized this difference between the HF and sham groups. These data suggest that one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of central integrative mechanisms, perhaps via improving the inhibitory GABAergic mechanism within the PVN, on the baroreflex arc.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Attenuated dopaminergic tone in the paraventricular nucleus contributing to sympathoexcitation in rats with Type 2 diabetes

Hong Zheng; Xuefei Liu; Yu-Long Li; Paras K. Mishra; Kaushik P. Patel

The study was conducted to investigate the role for dopamine in the centrally mediated sympathoexcitatory response in rats with Type 2 diabetes (T2D). T2D was induced by a combination of high-fat diet (HFD) and low-dose streptozotocin (STZ). HFD/STZ treatment for 12-14 wk resulted in significant increase in the number of FosB-positive cells in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM). In anesthetized rats, administration of exogenous dopamine (dopamine hydrochloride, 20 mM) in the PVN, but not in the RVLM, elicited decreases in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in control rats and but not in the T2D rats. Blocking the endogenous dopamine with dopamine D1/D5 receptor antagonist SCH39166 (2 mM) in the PVN and RVLM, resulted in increases in RSNA, MAP, and heart rate (HR) in both control and T2D rats. These responses were significantly attenuated in T2D rats compared with control rats (PVN - ΔRSNA: 21 ± 10 vs. 44 ± 2%; ΔMAP: 7 ± 3 vs. 19 ± 6 mmHg, ΔHR: 17 ± 5 vs. 32 ± 4 bpm, P < 0.05). There were no significant increases in response to dopamine D2/D3 receptor antagonist raclopride application in the PVN and RVLM of both control and T2D rats. Furthermore, there were decreased dopamine D1 receptor and D2 receptor expressions in the PVN of T2D rats. Taken together, these data suggest that reduced endogenous dopaminergic tone within the PVN may contribute to the sympathoexcitation in T2D.


The Journal of Sexual Medicine | 2013

Centrally Mediated Erectile Dysfunction in Rats with Type 1 Diabetes: Role of Angiotensin II and Superoxide

Hong Zheng; Xuefei Liu; Kaushik P. Patel

INTRODUCTION Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. AIM This study aims to determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)- and nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. METHODS Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol, or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. MAIN OUTCOME MEASURE Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. RESULTS Two weeks of enalapril, losartan, or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses-T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 minutes, P < 0.05; SNP responses-T1D+enalapril: 0.9 ± 0.3, T1D+losartan: 1.3 ± 0.3, T1D+tempol: 1.4 ± 0.4 vs. T1D+vehicle: 0.4 ± 0.2 penile erections/rat in the first 20 minutes, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections, were also significantly increased in T1D rats after enalapril, losartan, or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased, and superoxide production was reduced in T1D rats after these treatments. CONCLUSIONS These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes to the dysfunction of central NMDA-induced erectile responses in T1D rats via stimulation of superoxide.


American Journal of Physiology-renal Physiology | 2011

Increased renal ENaC subunits and sodium retention in rats with chronic heart failure

Hong Zheng; Xuefei Liu; U.S. Rao; Kaushik P. Patel

Renal tubular dysfunction could be involved in the increased sodium and water reabsorption in chronic heart failure (CHF). The goal of the present study was to examine the molecular basis for the increased renal sodium and water retention in CHF. We hypothesized that dysregulation of renal epithelial sodium channels (ENaC) could be involved in the pathogenesis of CHF. The left coronary ligation-induced model of heart failure in the rat was used. Real-time PCR and Western blot analysis indicated that the mRNA and protein abundance of α-, β-, and γ-subunits of ENaC were significantly increased by in the cortex (mRNA: α-ENaC Δ104 ± 24%, β-ENaC Δ47 ± 16%, γ-ENaC Δ55 ± 18%; protein: α-ENaC Δ114 ± 28%, β-ENaC Δ150 ± 31%, γ-ENaC Δ39 ± 5% compared with sham rats) and outer medulla (mRNA: α-ENaC Δ52 ± 18%, β-ENaC Δ38 ± 8%, γ-ENaC Δ39 ± 13%; protein: α-ENaC Δ88 ± 16%, β-ENaC Δ94 ± 28%, γ-ENaC Δ45 ± 9% compared with sham rats) of CHF compared with sham-operated rats. Immunohistochemistry microscopy confirmed the increased labeling of α-, β-, and γ-ENaC subunits in the collecting duct segments in rats with CHF. Furthermore, there was a significant increase in diuretic (7-fold compared with sham) and natriuretic responses (3-fold compared with sham) to ENaC inhibitor benzamil in the rats with CHF. Absence of renal nerves produced a greater contribution of ENaC in sodium retention in rats with CHF. These results suggest that the increased expression of renal ENaC subunits may contribute to the renal sodium and water retention observed during CHF.


Hypertension | 2016

Renal Denervation Improves Exaggerated Sympathoexcitation in Rats With Heart Failure: A Role for Neuronal Nitric Oxide Synthase in the Paraventricular Nucleus.

Kaushik P. Patel; Bo Xu; Xuefei Liu; Neeru M. Sharma; Hong Zheng

Renal denervation (RDN) has been postulated to reduce sympathetic drive during heart failure (HF), but the central mechanisms are not completely understood. The purpose of the present study was to assess the contribution of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN) in modulating sympathetic outflow in rats with HF that underwent RDN. HF was induced in rats by ligation of the left coronary artery. Four weeks after surgery, bilateral RDN was performed. Rats with HF had an increase in FosB-positive cells in the PVN with a concomitant increase in urinary excretion of norepinephrine, and both of these parameters were ameliorated after RDN. nNOS-positive cells immunostaining, diaphorase staining, and nNOS protein expression were significantly decreased in the PVN of HF rats, findings that were ameliorated by RDN. Microinjection of nNOS inhibitor N G-monomethyl l-arginine into the PVN resulted in a blunted increase in lumbar sympathetic nerve activity (11±2% versus 24±2%) in HF than in sham group. This response was normalized after RDN. Stimulation of afferent renal nerves produced a greater activation of PVN neurons in rats with HF. Afferent renal nerve stimulation elicited a greater increase in lumbar sympathetic nerve activity in rats with HF than in sham rats (45±5% versus 22±2%). These results suggest that intact renal nerves contribute to the reduction of nNOS in the PVN, resulting in the activation of the neurons in the PVN of rats with HF. RDN restores nNOS and thus attenuates the sympathoexcitation commonly observed in HF. # Novelty and Significance {#article-title-79}Renal denervation (RDN) has been postulated to reduce sympathetic drive during heart failure (HF), but the central mechanisms are not completely understood. The purpose of the present study was to assess the contribution of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN) in modulating sympathetic outflow in rats with HF that underwent RDN. HF was induced in rats by ligation of the left coronary artery. Four weeks after surgery, bilateral RDN was performed. Rats with HF had an increase in FosB-positive cells in the PVN with a concomitant increase in urinary excretion of norepinephrine, and both of these parameters were ameliorated after RDN. nNOS-positive cells immunostaining, diaphorase staining, and nNOS protein expression were significantly decreased in the PVN of HF rats, findings that were ameliorated by RDN. Microinjection of nNOS inhibitor NG-monomethyl L-arginine into the PVN resulted in a blunted increase in lumbar sympathetic nerve activity (11±2% versus 24±2%) in HF than in sham group. This response was normalized after RDN. Stimulation of afferent renal nerves produced a greater activation of PVN neurons in rats with HF. Afferent renal nerve stimulation elicited a greater increase in lumbar sympathetic nerve activity in rats with HF than in sham rats (45±5% versus 22±2%). These results suggest that intact renal nerves contribute to the reduction of nNOS in the PVN, resulting in the activation of the neurons in the PVN of rats with HF. RDN restores nNOS and thus attenuates the sympathoexcitation commonly observed in HF.

Collaboration


Dive into the Xuefei Liu's collaboration.

Top Co-Authors

Avatar

Hong Zheng

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kaushik P. Patel

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Neeru M. Sharma

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bo Xu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yu Long Li

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Allison Kleiber

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Craig J. Cunningham

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paras K. Mishra

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

U.S. Rao

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge