Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuntao Yin is active.

Publication


Featured researches published by Chuntao Yin.


Applied and Environmental Microbiology | 2013

Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.)

Chuntao Yin; Scot H. Hulbert; Kurtis L. Schroeder; Olga V. Mavrodi; Dmitri V. Mavrodi; Amit Dhingra; William F. Schillinger; Timothy C. Paulitz

ABSTRACT Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease.


BMC Genomics | 2009

Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. Tritici

Chuntao Yin; Xianming Chen; Xiaojie Wang; Qingmei Han; Zhensheng Kang; Scot H. Hulbert

BackgroundStripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. In spite of its agricultural importance, the genomics and genetics of the pathogen are poorly characterized. Pst transcripts from urediniospores and germinated urediniospores have been examined previously, but little is known about genes expressed during host infection. Some genes involved in virulence in other rust fungi have been found to be specifically expressed in haustoria. Therefore, the objective of this study was to generate a cDNA library to characterize genes expressed in haustoria of Pst.ResultsA total of 5,126 EST sequences of high quality were generated from haustoria of Pst, from which 287 contigs and 847 singletons were derived. Approximately 10% and 26% of the 1,134 unique sequences were homologous to proteins with known functions and hypothetical proteins, respectively. The remaining 64% of the unique sequences had no significant similarities in GenBank. Fifteen genes were predicted to be proteins secreted from Pst haustoria. Analysis of ten genes, including six secreted protein genes, using quantitative RT-PCR revealed changes in transcript levels in different developmental and infection stages of the pathogen.ConclusionsThe haustorial cDNA library was useful in identifying genes of the stripe rust fungus expressed during the infection process. From the library, we identified 15 genes encoding putative secreted proteins and six genes induced during the infection process. These genes are candidates for further studies to determine their functions in wheat-Pst interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance

Jayaveeramuthu Nirmala; Tom Drader; Paulraj K. Lawrence; Chuntao Yin; Scot H. Hulbert; Camille M. Steber; Brian J. Steffenson; Les J. Szabo; Diter von Wettstein; Andris Kleinhofs

The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation.


Molecular Plant-microbe Interactions | 2014

Characterization of a Tryptophan 2-Monooxygenase Gene from Puccinia graminis f. sp. tritici Involved in Auxin Biosynthesis and Rust Pathogenicity

Chuntao Yin; Jeong-Jin Park; David R. Gang; Scot H. Hulbert

The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.


BMC Genomics | 2015

Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia

Chuntao Yin; Samantha Ilene Downey; Naeh L. Klages-Mundt; Xianming Chen; Les J. Szabo; Michael O. Pumphrey; Scot H. Hulbert

BackgroundThe cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi.ResultsApproximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development.ConclusionsPartial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.


Euphytica | 2011

Prospects for functional analysis of effectors from cereal rust fungi

Chuntao Yin; Scot H. Hulbert

With the advancement of several Puccinia genome sequencing projects, along with gene expression data and methods for predicting secreted proteins, it is now possible to predict many effector proteins from the cereal rusts. Biological assays that can be conducted in a relatively high throughput fashion are necessary to assign specific functions, such as avirulence. Biolistic delivery of potential effectors is limited by the need to examine individual cells and delivery by Agrobacterium generally also affects small numbers of cells in grasses. An approach that has had some success in dicots is the use of bacterial systems to deliver proteins by their type III secretion systems (TTSS). Several bacterial systems were thus tested for their suitability in delivering effectors to wheat. Pseudomonas syringae DC3000 caused hypersensitive reactions (HR) when infiltrated into all tested wheat lines but only some barley lines. A variant strain with multiple effectors deleted showed a reduced HR on wheat lines. Pseudomonas fluorescens with an engineered TTSS system showed no HR in wheat lines but was able to deliver bacterial effectors AvrRpm1 and AvrRpt2 and the fungal toxin ToxA. Delivery of the effectors by P. fluorescens could be detected by HR or by staining for presence of hydrogen peroxide or callose deposits. The bacterial systems thus showed good potential for their ability to deliver foreign proteins into wheat cells.


G3: Genes, Genomes, Genetics | 2017

Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci

Christina A. Cuomo; Guus Bakkeren; Hala Badr Khalil; Vinay Panwar; David L. Joly; Rob Linning; Sharadha Sakthikumar; Xiao Song; Xian Adiconis; Lin Fan; Jonathan M. Goldberg; Joshua Z. Levin; Qiandong Zeng; Y. Anikster; Myron Bruce; Meinan Wang; Chuntao Yin; Brent McCallum; Les J. Szabo; Scot H. Hulbert; Xianming Chen; John P. Fellers

Three members of the Puccinia genus, Puccinia triticina (Pt), P. striiformis f.sp. tritici (Pst), and P. graminis f.sp. tritici (Pgt), cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt. We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs)/kb] nearly twice the level detected in Pt (2.57 SNPs/kb) and that previously reported for Pgt. Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3) mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS) of the HD and STE3 alleles reduced wheat host infection.


Frontiers in Plant Science | 2017

Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars

Aaron K. Mahoney; Chuntao Yin; Scot H. Hulbert

Minimal tillage management of extensive crops like wheat can provide significant environmental services but can also lead to adverse interactions between soil borne microbes and the host. Little is known about the ability of the wheat cultivar to alter the microbial community from a long-term recruitment standpoint, and whether this recruitment is consistent across field sites. To address this, nine winter wheat cultivars were grown for two consecutive seasons on the same plots on two different farm sites and assessed for their ability to alter the rhizosphere bacterial communities in a minimal tillage system. Using deep amplicon sequencing of the V1–V3 region of the 16S rDNA, a total of 26,604 operational taxonomic units (OTUs) were found across these two sites. A core bacteriome consisting of 962 OTUs were found to exist in 95% of the wheat rhizosphere samples. Differences in the relative abundances for these wheat cultivars were observed. Of these differences, 24 of the OTUs were found to be significantly different by wheat cultivar and these differences occurred at both locations. Several of the cultivar-associated OTUs were found to correspond with strains that may provide beneficial services to the host plant. Network correlations demonstrated significant co-occurrences for different taxa and their respective OTUs, and in some cases, these interactions were determined by the wheat cultivar. Microbial abundances did not play a role in the number of correlations, and the majority of the co-occurrences were shown to be positively associated. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to determine potential functions associated with OTUs by association with rhizosphere members which have sequenced metagenomics data. Potentially beneficial pathways for nitrogen, sulfur, phosphorus, and malate metabolism, as well as antimicrobial compounds, were inferred from this analysis. Differences in these pathways and their associated functions were found to differ by wheat cultivar. In conclusion, our study suggests wheat cultivars are involved in shaping the rhizosphere by differentially altering the bacterial OTUs consistently across different sites, and these altered bacterial communities may provide beneficial services to the host.


Phytobiomes | 2017

Bacterial Communities on Wheat Grown Under Long-Term Conventional Tillage and No-Till in the Pacific Northwest of the United States

Chuntao Yin; Nicholas Mueth; Scot H. Hulbert; Daniel C. Schlatter; Timothy C. Paulitz; K. L. Schroeder; Aaron Prescott; Amit Dhingra

Cultural practices, such as tillage, often have widespread impacts on phytobiomes. No-till has been increasingly adopted by wheat growers in the dryland cropping areas of the inland Pacific Northwest in the United States to reduce soil erosion and decrease fuel and labor inputs, yet there are limited data on how conversion to no-till impacts plant-associated bacteria in this highly productive system. To address this knowledge gap, we evaluated bacterial communities in bulk and rhizosphere soil of wheat in two locations (Idaho and Washington) for 2 years, comparing long-term no-till plots and adjacent plots under conventional tillage. In this study, members of phylum Proteobacteria were relatively more abundant in rhizosphere soil, while Acidobacteria and Gemmatimonadetes were more abundant in bulk soil than in the rhizosphere. Bacteroidetes were more frequent under conventional than conservation tillage. In general, bacterial families were more affected by the position of the sample (rhizosphere versus bu...


Phytopathology | 2017

Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses

Chuntao Yin; Joanna Kud; Kiwamu Tanaka; Aaron K. Mahoney; Fangming Xiao; Scot H. Hulbert

Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

Collaboration


Dive into the Chuntao Yin's collaboration.

Top Co-Authors

Avatar

Scot H. Hulbert

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Xianming Chen

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Timothy C. Paulitz

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Les J. Szabo

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Meinan Wang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Aaron K. Mahoney

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Amit Dhingra

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Chongjing Xia

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Ian C. Burke

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge