Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunyan Deng is active.

Publication


Featured researches published by Chunyan Deng.


Biosensors and Bioelectronics | 2008

Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode

Chunyan Deng; Jinhua Chen; Xiaoli Chen; Chunhui Xiao; Lihua Nie; Shouzhuo Yao

Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.


Analytical Chemistry | 2009

Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles

Chunyan Deng; Jinhua Chen; Zhou Nie; Mengdong Wang; Xiaochen Chu; Xiaoli Chen; Xilin Xiao; Chunyang Lei; Shouzhuo Yao

A simple and ultrasensitive label-free electrochemical impedimetric aptasensor for thrombin based on the cascaded signal amplification was reported. The sandwich system of aptamer/thrombin/aptamer-functionalized Au nanoparticles (Apt-AuNPs) was fabricated as the sensing platform. The change of the interfacial feature of the electrode was characterized by electrochemical impedance analysis with the redox probe [Fe(CN)(6)](3-/4-). For improving detection sensitivity, the three-level cascaded impedimetric signal amplification was developed: (1) Apt-AuNPs as the first-level signal enhancer; (2) the steric-hindrance between the enlarged Apt-AuNPs as the second-level signal amplification; (3) the electrostatic-repulsion between sodium dodecylsulfate (SDS) stabilized Apt-AuNPs and the redox probe [Fe(CN)(6)](3-/4-) as the third-level signal amplification. Enlargement of Apt-AuNPs integrated with negatively charged surfactant (SDS) capping could not only improve the detection sensitivity of the impedimetric aptasensor for thrombin but also present a simple and general signal-amplification model for impedimetric sensor. The aptasensor based on the enlargement of negatively charged Apt-AuNPs showed an increased response of the electron-transfer resistance to the increase of thrombin concentration through a wide detection range from 100 fM to 100 nM. The linear detection range was 0.05-35 nM, and thrombin was easily detectable to a concentration of 100 fM. The aptasensor also has good selectivity and reproducibility.


Biosensors and Bioelectronics | 2010

A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode

Chunyan Deng; Jinhua Chen; Zhou Nie; Shihui Si

A novel strategy for fabricating the sensitive and stable biosensor was present by layer-by-layer (LBL) self-assembling glucose oxidase (GOD) on multiwall carbon nanotube (CNT)-modified glassy carbon (GC) electrode. GOD was immobilized on the negatively charged CNT surface by alternatively assembling a cationic poly(ethylenimine) (PEI) layer and a GOD layer. And the direct electrochemistry of GOD in the self-assembled {GOD/PEI}(n) film was investigated. CNT as an excellent nanomaterial greatly improved the direct electron transfer between GOD in {GOD/PEI}(n) film and the electrode. And the ultrathin {GOD/PEI}(n) film on the CNT surface provided a favorable microenvironment to keep the bioactivity of GOD. Moreover, PEI used as an out-layer was adsorbed on the top of the {GOD/PEI}(n) film to form the sandwich-like structure (PEI/{GOD/PEI}(n)), improving the stability of the enzyme electrode. On basis of these, the developed PEI/{GOD/PEI}(n)/CNT/GC biosensor has a high sensitivity of 106.57 μA mM(-1) cm(-2), and can measure as low as 0.05 mM glucose. In addition, the biosensor has excellent operational stability with no decrease in the activity of enzyme over a 1-week period. Therefore, the developed strategy making use of the advantages of CNT and LBL assembly is ideal for the direct electrochemistry of the redox enzymes and the construction of the sensitive and stable enzyme biosensor.


Analytical Chemistry | 2009

Sensitive Bifunctional Aptamer-Based Electrochemical Biosensor for Small Molecules and Protein

Chunyan Deng; Jinhua Chen; Lihua Nie; Zhou Nie; Shouzhuo Yao

In this paper, a bifunctional electrochemical biosensor for highly sensitive detection of small molecule (adenosine) or protein (lysozyme) was developed. Two aptamer units for adenosine and lysozyme were immobilized on the gold electrode by the formation of DNA/DNA duplex. The detection of adenosine or lysozyme could be carried out by virtue of switching structures of aptamers from DNA/DNA duplex to DNA/target complex. The change of the interfacial feature of the electrode was characterized by cyclic voltammertic (CV) response of surface-bound [Ru(NH(3))(6)](3+). On the other hand, DNA functionalized Au nanoparticles (DNA-AuNPs) were used to enhance the sensitivity of the aptasensor because DNA-AuNPs modified interface could load more [Ru(NH(3))(6)](3+) cations. Thus, the assembly of two aptamer-contained DNA strands integrated with the DNA-AuNPs amplification not only improves the sensitivity of the electrochemical aptasensor but also presents a simple and general model for bifunctional aptasensor. The proposed aptasensor has low detection limit (0.02 nM for adenosine and 0.01 microg mL(-1) for lysozyme) and exhibits several advantages such as high sensitivity and bifunctional recognition.


Biosensors and Bioelectronics | 2009

A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode

Chunyan Deng; Jinhua Chen; Mengdong Wang; Chunhui Xiao; Zhou Nie; Shouzhuo Yao

The Boron-doped carbon nanotubes (BCNTs) modified glassy carbon (GC) electrode was obtained simply and used for highly selective and sensitive determination of dopamine (DA). Comparing with the bare GC and CNTs/GC electrodes, the BCNTs have higher catalytic activity toward the oxidation of DA and ascorbic acid (AA). Moreover, the voltammetric peaks of AA and DA were separated enough (ca. 238 mV) at the BCNTs/GC electrode, which is superior to that at the CNTs/GC electrode (ca. 122 mV). Thus, the selective determination of DA was carried out successfully in the presence of AA. A wide concentration range (2.0 x 10(-8)-7.5 x 10(-5)M) and low detection limit (1.4 nM, S/N=3) for the DA detection were obtained. The possibility of the BCNTs/GC electrode for the determination of DA in human blood serum has also been evaluated. The advantageous properties of this electrode for the DA determination lie in its excellent catalytic activity, selectivity and simplicity. The more edge plane sites presented on the BCNTs surface were partially responsible for its good analytical behavior.


Biosensors and Bioelectronics | 2011

Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement

Fengli Qu; Hongmei Lu; Minghui Yang; Chunyan Deng

A new electrochemical immunosensor for the detection of protein biomarker platelet-derived growth factor BB (PDGF-BB) was developed based on graphene oxide (GO) initiated silver enhancement. The immunosensor was fabricated based on the traditional sandwich protocol using secondary anti-PDGF-BB antibody (Ab(2)) modified GO as label. Gold electrode was first modified with self-assembled monolayer (SAM) to block the electron transfer between the electrode and K(3)Fe(CN)(6) solution. After the immobilization of primary anti-PDGF-BB antibody (Ab(1)) onto electrode via aminidation to the carboxylic group of SAM and the formation of the sandwich immuno-structure onto electrode surface, the electrode was immersed into silver enhancement solution for silver deposition. The deposited metal silver onto GO then mediated electron transfer across the SAM, producing redox current. The resulting immunosensor displays a wide range of linear response, low detection limit, good reproducibility and stability. The immunosensor was used to the detection of PDGF-BB contents in serum samples with satisfactory results.


Talanta | 2009

A sensitive, label free electrochemical aptasensor for ATP detection

Wang Li; Zhou Nie; Xiahong Xu; Qinpeng Shen; Chunyan Deng; Jinhua Chen; Shouzhuo Yao

A sensitive, label free electrochemical aptasensor for small molecular detection has been developed in this work based on gold nanoparticles (AuNPs) amplification. This aptasensor was fabricated as a tertiary hybrid DNA-AuNPs system, which involved the anchored DNA (ADNA) immobilized on gold electrode, reporter DNA (RDNA) tethered with AuNPs and target-responsive DNA (TRDNA) linking ADNA and RDNA. Electrochemical signal is derived from chronocoulometric interrogation of [Ru(NH(3))(6)](3+) (RuHex) that quantitatively binds to surface-confined DNA via electrostatic interaction. Using adenosine triphosphate (ATP) as a model analyte and ATP-binding aptamer as a model molecular reorganization element, the introduction of ATP triggers the structure switching of the TRDNA to form aptamer-ATP complex, which results in the dissociation of the RDNA capped AuNPs (RDNA-AuNPs) and release of abundant RuHex molecules trapped by RDNA-AuNPs. The incorporation of AuNPs in this strategy significantly enhances the sensitivity because of the amplification of electrochemical signal by the RDNA-AuNPs/RuHex system. Under optimized conditions, a wide linear dynamic range of 4 orders of magnitude (1 nM-10 microM) was reached with the minimum detectable concentration at sub-nanomolar level (0.2 nM). Those results demonstrate that our nanoparticles-based amplification strategy is feasible for ATP assay and presents a potential universal method for other small molecular aptasensors.


Talanta | 2008

Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode.

Xiaoli Chen; Jinhua Chen; Chunyan Deng; Chunhui Xiao; Yanmin Yang; Zhou Nie; Shouzhuo Yao

Doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications due to their unique physicochemical properties. In this paper, the boron-doped carbon nanotubes (BCNTs) were used in amperometric biosensors. It has been found that the electrocatalytic activity of the BCNTs modified glassy carbon (GC) electrode toward the oxidation of hydrogen peroxide is much higher than that of the un-doped CNTs modified electrode due to the large amount of edge sites and oxygen-rich groups located at the defective sites induced by boron doping. Glucose oxidase (GOD) was selected as the model enzyme and immobilized on the BCNTs modified glassy carbon electrode by entrapping GOD into poly(o-aminophenol) film. The performance of the sensor was investigated by electrochemical methods. At an optimum potential of +0.60 V and pH 7.0, the biosensor exhibits good characteristics, such as high sensitivity (171.2 nA mM(-1)), low detection limit (3.6 microM), short response time (within 6s), satisfactory anti-interference ability and good stability. The apparent Michaelis-Menten constant (K(m)(app)) is 15.19 mM. The applicability to the whole blood analysis of the enzyme electrode was also evaluated.


Talanta | 2013

A sensitive enzymeless sensor for hydrogen peroxide based on the polynucleotide-templated silver nanoclusters/graphene modified electrode.

Yalin Xia; Wenhua Li; Ming Wang; Zhou Nie; Chunyan Deng; Shouzhuo Yao

A novel, sensitive and enzymeless electrochemical sensor based on polynucleotide-templated silver nanoclusters (DNA-AgNCs)/graphene composite film was developed for the detection of hydrogen peroxide. The graphene modified glassy carbon electrode (GCE) was employed because graphene has several advantages including excellent conductivity, biocompatibility, and large surface area to volume ratio. In addition, it was found that DNA-AgNCs have remarkable electrocatalytic activity toward the reduction of hydrogen peroxide, and can be easily immobilized onto the surface of the graphene/GCE by π-π stacking. The sensor based on the (DNA-AgNCs)/graphene/GCE exhibited a rapid response (ca. 3s), a low detection limit (3 μM), a wide linear range from 15 μM to 23 mM, high selectivity, as well as good repeatability. Moreover, the common interfering species, such as ascorbic acid, uric acid, dopamine, glutathione, and l-cysteine, did not result in any interference. This present work may expand the use of silver nanoclusters in the field of electrochemical sensor.


Talanta | 2015

A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification

Xi Liu; Yun Qin; Chunyan Deng; Juan Xiang; Yuanjian Li

A simple and sensitive electrochemical impedimetric aptasensor based on gold nanoparticles (AuNPs) signal amplification was developed for the ultrasensitive detection of tumor markers (mucin 1 protein, MUC1 as a model). The designed cDNA, which is partly complementary with the aptamer of MUC1 was immobilized on the gold electrode. The detection of MUC1 could be carried out by virtue of switching structures of aptamers from DNA/DNA duplex to DNA/target complex. The change of the interfacial feature of the electrode was characterized by electrochemical impedance analysis (EIS) with the redox probe [Fe(CN)6](3-/4-). The quantitative detection of MUC1 protein was obtained from the changes of electron-transfer resistance (ΔRet). Moreover, as the signal enhancer, the aptamer-modified AuNPs (Apt@AuNPs) conjugates was introduced on the electrode by the hybridization of cDNA with aptamer. As expected, the detection sensitivity for MUC1 was greatly improved, which may be due to the specific binding of MUC1 onto the surface of the Apt@AuNPs modified electrode. This proposed simple aptasensor has a low detection limit of 0.1 nM, and also exhibits several advantages of high sensitivity and good selectivity. This present work may provide a general model for the detection of tumor marker based on impedimetric aptasensor.

Collaboration


Dive into the Chunyan Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shouzhuo Yao

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Xiang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Minghui Yang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Shihui Si

Central South University

View shared research outputs
Top Co-Authors

Avatar

Chunhui Xiao

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Qin

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge