Chunyi Zhang
Civil Aviation Authority of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chunyi Zhang.
Plant Physiology | 2013
Xiaoduo Lu; Dijun Chen; Dengfeng Shu; Zhao Zhang; Weixuan Wang; Christian Klukas; Ling-Ling Chen; Yunliu Fan; Ming Chen; Chunyi Zhang
Transcriptomic analysis of maize seed soon after pollination aids understanding of how maize embryo and endosperm are differentially regulated in the early development stage. Transcriptome analysis of early-developing maize (Zea mays) seed was conducted using Illumina sequencing. We mapped 11,074,508 and 11,495,788 paired-end reads from endosperm and embryo, respectively, at 9 d after pollination to define gene structure and alternative splicing events as well as transcriptional regulators of gene expression to quantify transcript abundance in both embryo and endosperm. We identified a large number of novel transcribed regions that did not fall within maize annotated regions, and many of the novel transcribed regions were tissue-specifically expressed. We found that 50.7% (8,556 of 16,878) of multiexonic genes were alternatively spliced, and some transcript isoforms were specifically expressed either in endosperm or in embryo. In addition, a total of 46 trans-splicing events, with nine intrachromosomal events and 37 interchromosomal events, were found in our data set. Many metabolic activities were specifically assigned to endosperm and embryo, such as starch biosynthesis in endosperm and lipid biosynthesis in embryo. Finally, a number of transcription factors and imprinting genes were found to be specifically expressed in embryo or endosperm. This data set will aid in understanding how embryo/endosperm development in maize is differentially regulated.
Cell Research | 2008
Xiaoduo Lu; Xiaolin Liu; Lizhe An; Wei Zhang; Jian Sun; Huijuan Pei; Hongyan Meng; Yunliu Fan; Chunyi Zhang
MSH5, a member of the MutS homolog DNA mismatch repair protein family, has been shown to be required for proper homologous chromosome recombination in diverse organisms such as mouse, budding yeast and Caenorhabditis elegans. In this paper, we show that a mutant Arabidopsis plant carrying the putative disrupted AtMSH5 gene exhibits defects during meiotic division, producing a proportion of nonviable pollen grains and abnormal embryo sacs, and thereby leading to a decrease in fertility. AtMSH5 expression is confined to meiotic floral buds, which is consistent with a possible role during meiosis. Cytological analysis of male meiosis revealed the presence of numerous univalents from diplotene to metaphase I, which were associated with a great reduction in chiasma frequencies. The average number of residual chiasmata in the mutant is reduced to 2.54 per meiocyte, which accounts for ∼25% of the amount in the wild type. Here, quantitative cytogenetical analysis reveals that the residual chiasmata in Atmsh5 mutants are randomly distributed among meiocytes, suggesting that AtMSH5 has an essential role during interference-sensitive chiasma formation. Taken together, the evidence indicates that AtMSH5 promotes homologous recombination through facilitating chiasma formation during prophase I in Arabidopsis.
Plant Physiology | 2013
Ling Jiang; Yanyan Liu; Hong Sun; Yueting Han; Jinglai Li; Changkun Li; Wenzhu Guo; Hongyan Meng; Sha Li; Yunliu Fan; Chunyi Zhang
Summary: The mitochondrial folylpolyglutamate synthetase DFC is involved in nitrogen utilization through its participation in photorespiration during early seedling development in Arabidopsis. Investigations into the biochemical processes and regulatory mechanisms of nitrogen (N) utilization can aid in understanding how N is used efficiently in plants. This report describes a deficiency in N utilization in an Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of the mitochondrial folylpolyglutamate synthetase gene DFC, which catalyzes the conjugation of glutamate residues to the tetrahydrofolate during folate synthesis. The mutant seedlings displayed several metabolic changes that are typical of plant responses to low-N stress, including increased levels of starch and anthocyanin synthesis as well as decreased levels of soluble protein and free amino acid, as compared with those in wild-type seedlings when external N was sufficient. More striking changes were observed when dfc seedlings were grown under N-limited conditions, including shorter primary roots, fewer lateral roots, higher levels of glycine and carbon-N ratios, and lower N content than those in wild-type seedlings. Gene expression studies in mutant seedlings revealed altered transcript levels of several genes involved in folate biosynthesis and N metabolism. The biochemical and metabolic changes also suggested that N assimilation is drastically perturbed due to a loss of DFC function. The observation that elevated CO2 partly rescued the dfc phenotypes suggests that the alterations in N metabolism in dfc may be mainly due to a defect in photorespiration. These results indicate that DFC is required for N utilization in Arabidopsis and provide new insight into a potential interaction between folate and N metabolism.
PLOS ONE | 2014
Hongyan Meng; Ling Jiang; Bosi Xu; Wenzhu Guo; Jinglai Li; Xiuqing Zhu; Xiaoquan Qi; Lixin Duan; Xianbin Meng; Yunliu Fan; Chunyi Zhang
Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3 −. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3 − conditions, and further enhanced under NO3 − limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3 − during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3 − as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.
PLOS ONE | 2015
Xiaoduo Lu; Weixuan Wang; Wen Ren; Zhenguang Chai; Wenzhu Guo; Rumei Chen; Lei Wang; Jun Zhao; Zhihong Lang; Yunliu Fan; Jiuran Zhao; Chunyi Zhang
Background Epigenetic regulation is well recognized for its importance in gene expression in organisms. DNA methylation, an important epigenetic mark, has received enormous attention in recent years as it’s a key player in many biological processes. It remains unclear how DNA methylation contributes to gene transcription regulation in maize seeds. Here, we take advantage of recent technologies to examine the genome-wide association of DNA methylation with transcription of four types of DNA sequences, including protein-coding genes, pseudogenes, transposable elements, and repeats in maize embryo and endosperm, respectively. Results The methylation in CG, CHG and CHH contexts plays different roles in the control of gene expression. Methylation around the transcription start sites and transcription stop regions of protein-coding genes is negatively correlated, but in gene bodies positively correlated, to gene expression level. The upstream regions of protein-coding genes are enriched with 24-nt siRNAs and contain high levels of CHH methylation, which is correlated to gene expression level. The analysis of sequence content within CG, CHG, or CHH contexts reveals that only CHH methylation is affected by its local sequences, which is different from Arabidopsis. Conclusions In summary, we conclude that methylation-regulated transcription varies with the types of DNA sequences, sequence contexts or parts of a specific gene in maize seeds and differs from that in other plant species. Our study helps people better understand from a genome-wide viewpoint that how transcriptional expression is controlled by DNA methylation, one of the important factors influencing transcription, and how the methylation is associated with small RNAs.
PLOS ONE | 2014
Xiaoduo Lu; Dongyuan Zhang; Shipeng Li; Yanping Su; Qiuju Liang; Hongyan Meng; Songdong Shen; Yunliu Fan; Chun-Ming Liu; Chunyi Zhang
Chloroplast formation is associated with embryo development and seedling growth. However, the relationship between chloroplast differentiation and embryo development remains unclear. Five FtsHi genes that encode proteins with high similarity to FtsH proteins, but lack Zn2+-binding motifs, are present in the Arabidopsis genome. In this study, we showed that T-DNA insertion mutations in the Arabidopsis FtsHi4 gene resulted in embryo arrest at the globular-to-heart–shaped transition stage. Transmission electron microscopic analyses revealed abnormal plastid differentiation with a severe defect in thylakoid formation in the mutant embryos. Immunocytological studies demonstrated that FtsHi4 localized in chloroplasts as a thylakoid membrane-associated protein, supporting its essential role in thylakoid membrane formation. We further showed that FtsHi4 forms protein complexes, and that there was a significant reduction in the accumulation of D2 and PsbO (two photosystem II proteins) in mutant ovules. The role of FtsHi4 in chloroplast development was confirmed using an RNA-interfering approach. Additionally, mutations in other FtsHi genes including FtsHi1, FtsHi2, and FtsHi5 caused phenotypic abnormalities similar to ftshi4 with respect to plastid differentiation during embryogenesis. Taken together, our data suggest that FtsHi4, together with FtsHi1, FtsHi2, and FtsHi5 are essential for chloroplast development in Arabidopsis.
BMC Plant Biology | 2015
Tong Wei Lian; Wenzhu Guo; Maoran Chen; Jinglai Li; Qiuju Liang; Fang Liu; Hongyan Meng; Bosi Xu; Jinfeng Chen; Chunyi Zhang; Ling Jiang
BackgroundMaize is a major staple food crop globally and contains various concentrations of vitamins. Folates are essential water-soluble B-vitamins that play an important role as one-carbon (C1) donors and acceptors in organisms. To gain an understanding of folate metabolism in maize, we performed an intensive in silico analysis to screen for genes involved in folate metabolism using publicly available databases, followed by examination of the transcript expression patterns and profiling of the folate derivatives in the kernels of two maize inbred lines.ResultsA total of 36 candidate genes corresponding to 16 folate metabolism-related enzymes were identified. The maize genome contains all the enzymes required for folate and C1 metabolism, characterized by highly conserved functional domains across all the other species investigated. Phylogenetic analysis revealed that these enzymes in maize are conserved throughout evolution and have a high level of similarity with those in sorghum and millet. The LC-MS analyses of two maize inbred lines demonstrated that 5-methyltetrahydrofolate was the major form of folate derivative in young seeds, while 5-formyltetrahydrofolate in mature seeds. Most of the genes involved in folate and C1 metabolism exhibited similar transcriptional expression patterns between these two maize lines, with the highest transcript abundance detected on day after pollination (DAP) 6 and the decreased transcript abundance on DAP 12 and 18. Compared with the seeds on DAP 30, 5-methyltetrahydrofolate was decreased and 5-formyltetrahydrofolate was increased sharply in the mature dry seeds.ConclusionsThe enzymes involved in folate and C1 metabolism are conserved between maize and other plant species. Folate and C1 metabolism is active in young developing maize seeds at transcriptional levels.
Frontiers in Plant Science | 2017
Ling Jiang; Weixuan Wang; Tong Lian; Chunyi Zhang
Vitamin deficiencies are major forms of micronutrient deficiencies, and are associated with huge economic losses as well as severe physical and intellectual damages to humans. Much evidence has demonstrated that biofortification plays an important role in combating vitamin deficiencies due to its economical and effective delivery of nutrients to populations in need. Biofortification enables food plants to be enriched with vitamins through conventional breeding and/or biotechnology. Here, we focus on the progress in the manipulation of the vitamin metabolism, an essential part of biofortification, by the genetic modification or by the marker-assisted selection to understand mechanisms underlying metabolic improvement in food plants. We also propose to integrate new breeding technologies with metabolic pathway modification to facilitate biofortification in food plants and, thereby, to benefit human health.
Biochemical and Biophysical Research Communications | 2017
Hongyan Meng; Bosi Xu; Chunyi Zhang; Ling Jiang
Folates play an important role in plant metabolism. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in folate metabolism and nitrogen metabolism under nitrate-limited conditions in darkness. Exogenous applied 5-formyl-tetrahydrofolate (5-F-THF) completely restored nitrogen content, soluble protein, total amino acids, individual amino acids including Glu, Gln, Asp, Asn, Pro, Arg and Met, nitrate, and endogenous 5-F-THF in atdfb-3 to the wild-type level. At the same time the application of 5-F-THF partially restored the content of Ser and nitrite in the mutant. Taken together, these results indicated that intact folate metabolism was necessary for nitrogen metabolism in Arabidopsis thaliana under nitrate-limited condition in darkness, providing novel insights into function of folate.
Molecular Plant | 2017
Xiaoduo Lu; Jisheng Liu; Wen Ren; Qun Yang; Zhenguang Chai; Rumei Chen; Lei Wang; Jun Zhao; Zhihong Lang; Haiyang Wang; Yunliu Fan; Jiuran Zhao; Chunyi Zhang