Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cindy K. Miranti is active.

Publication


Featured researches published by Cindy K. Miranti.


Nature Cell Biology | 2002

Sensing the environment: a historical perspective on integrin signal transduction

Cindy K. Miranti; Joan S. Brugge

Cell adhesion mediated by integrin receptors has a critical function in organizing cells in tissues and in guiding haematopoietic cells to their sites of action. However, integrin adhesion receptors have broader functions in regulating cell behaviour through their ability to transduce bi-directional signals into and out of the cell and to engage in reciprocal interactions with other cellular receptors. This historical perspective traces the key findings that have led to our current understanding of these important functions of integrins.


Molecular and Cellular Biology | 1993

A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity.

V. M. Rivera; Cindy K. Miranti; Ravi P. Misra; David D. Ginty; Rey-Huei Chen; John Blenis; Michael E. Greenberg

A signaling pathway by which growth factors may induce transcription of the c-fos proto-oncogene has been characterized. Growth factor stimulation of quiescent fibroblasts activates a protein kinase cascade that leads to the rapid and transient phosphorylation of the serum response factor (SRF), a regulator of c-fos transcription. The in vivo kinetics of SRF phosphorylation and dephosphorylation parallel the activation and subsequent repression of c-fos transcription, suggesting that this phosphorylation event plays a critical role in the control of c-fos expression. The ribosomal S6 kinase pp90rsk, a growth factor-inducible kinase, phosphorylates SRF in vitro at serine 103, the site that becomes newly phosphorylated upon growth factor stimulation in vivo. Phosphorylation of serine 103 significantly enhances the affinity and rate with which SRF associates with its binding site, the serum response element, within the c-fos promoter. These results suggest a model in which the growth factor-induced phosphorylation of SRF at serine 103 contributes to the activation of c-fos transcription by facilitating the formation of an active transcription complex at the serum response element.


Molecular and Cellular Biology | 1995

Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase.

Cindy K. Miranti; David D. Ginty; Gloria Huang; Talal A. Chatila; Michael E. Greenberg

Enhanced levels of cytoplasmic Ca2+ due to membrane depolarization with elevated levels of KCl or exposure to the Ca2+ ionophore ionomycin stimulate serum response element (SRE)-dependent transcription in the pheochromocytoma cell line PC12. By using altered binding specificity mutants of transcription factors that bind to the SRE, it was demonstrated that in contrast to treatment with purified growth factors, such as nerve growth factor, the serum response factor (SRF), but not Elk-1, mediates Ca(2+)-regulated SRE-dependent transcription. Enhanced levels of cytoplasmic Ca2+ were found to trigger SRE-dependent transcription via a Ras-independent signaling pathway that appears to involve a Ca2+/calmodulin-dependent kinase (CaMK). Overexpression of a constitutively active form of CaMKIV stimulated SRF-dependent transcription. Taken together, these findings indicate that SRF is a versatile transcription factor that, when bound to the SRE, can function by distinct mechanisms and can mediate transcriptional responses to both CaMK- and Ras-dependent signaling pathways.


Molecular and Cellular Biology | 2004

Epidermal Growth Factor Receptor-Dependent Regulation of Integrin-Mediated Signaling and Cell Cycle Entry in Epithelial Cells

Heather M. Bill; Beatrice Knudsen; Sheri L. Moores; Senthil K. Muthuswamy; Vikram R. Rao; Joan S. Brugge; Cindy K. Miranti

ABSTRACT Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced by cell adhesion to matrix proteins, including tyrosine phosphorylation of Shc, Cbl, and phospholipase Cγ, and activation of the Ras/Erk and phosphatidylinositol 3′-kinase/Akt signaling pathways. In contrast, activation of focal adhesion kinase, Src, and protein kinase C, adhesion to matrix proteins, cell spreading, migration, and actin cytoskeletal rearrangements are induced independently of EGFR kinase activity. The ability of integrins to induce the activation of EGFR and its subsequent regulation of Erk and Akt activation permitted adhesion-dependent induction of cyclin D1 and p21, Rb phosphorylation, and activation of cdk4 in epithelial cells in the absence of exogenous growth factors. Adhesion of epithelial cells to the ECM failed to efficiently induce degradation of p27, to induce cdk2 activity, or to induce Myc and cyclin A synthesis; subsequently, cells did not progress into S phase. Treatment of ECM-adherent cells with EGF, or overexpression of EGFR or Myc, resulted in restoration of late-G1 cell cycle events and progression into S phase. These results indicate that partial activation of EGFR by integrin receptors plays an important role in mediating events triggered by epithelial cell attachment to ECM; EGFR is necessary for activation of multiple integrin-induced signaling enzymes and sufficient for early events in G1 cell cycle progression. Furthermore, these findings suggest that EGFR or Myc overexpression may provoke ligand-independent proliferation in matrix-attached cells in vivo and could contribute to carcinoma development.


Oncogene | 2006

Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases

S C Sridhar; Cindy K. Miranti

KAI1/CD82, a tetraspanin protein, was first identified as a metastasis suppressor in prostate cancer. How loss of CD82 expression promotes cancer metastasis is unknown. Restoration of CD82 expression to physiological levels in the metastatic prostate cell line PC3 inhibits integrinmediated cell migration and invasion, but does not affect integrin expression. Integrin-dependent activation of the receptor kinase c-Met is dramatically reduced in CD82expressing cells, as is c-Met activation by its ligand HGF/ SF. CD82 expression also reduced integrin-induced activation and phosphorylation of the cytoplasmic tyrosine kinase Src, and its downstream substrates p130Cas and FAK Y861. Inhibition of c-Met expression or Src kinase function reduced matrigel invasion of PC3 cells to the same extent as CD82 expression. These data indicate that CD82 functions to suppress integrin-induced invasion by regulating signaling to c-Met and Src kinases, and suggests that CD82 loss may promote metastasis by removing a negative regulator of c-Met and Src signaling. Oncogene (2006) 25, 2367–2378. doi:10.1038/sj.onc.1209269; published online 12 December 2005


Journal of Biological Chemistry | 1999

Protein Kinase C Regulates Integrin-induced Activation of the Extracellular Regulated Kinase Pathway Upstream of Shc

Cindy K. Miranti; Shigeo Ohno; Joan S. Brugge

Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCα, PKCδ, or PKCε was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.


Oncogene | 2004

Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis.

Chong Chou Lee; Andrew J. Putnam; Cindy K. Miranti; Margaret Gustafson; Ling Mei Wang; George F. Vande Woude; Chong Feng Gao

A strict regulation of hepatocyte growth factor/scatter factor (HGF/SF)-Met signaling is essential for its appropriate function. Several negative regulators of Met signaling have been identified. Here we report that human Spry2 is induced by HGF/SF and negatively regulates HGF/SF-Met signaling. We show that overexpression of Spry2 inhibits cell proliferation, anchorage-independent cell growth, and migration in wound-healing and in vitro invasion assays. Measured in an electric cell-substrate impedance sensing biosensor, cell movement is restricted, because Spry2 dramatically facilitates cell attachment and spreading by enhancing focal adhesions and increasing stress fibers. An analysis of cell cycle distribution shows, unexpectedly, that Spry2-GFP cells are polyploid. Thus, as with FGF and EGF receptors, Spry2-GFP tempers downstream Met signaling in addition to its pronounced effect on cell adhesion, and it has properties suitable to be considered a tumor-suppressor protein.


Cellular Signalling | 2009

Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis.

Cindy K. Miranti

The recent identification of metastasis suppressor genes, uniquely responsible for negatively controlling cancer metastasis, are providing inroads into the molecular machinery involved in metastasis. While the normal function of a few of these genes is known; the molecular events associated with their loss that promotes tumor metastasis is largely not understood. KAI1/CD82, whose loss is associated with a wide variety of metastatic cancers, belongs to the tetraspanin family. Despite intense scrutiny, many aspects of how CD82 specifically functions as a metastasis suppressor and its role in normal biology remain to be determined. This review will focus on the molecular events associated with CD82 loss, the potential impact on signaling pathways that regulate cellular processes associated with metastasis, and its relationship with other metastasis suppressor genes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist

W. David Tolbert; Jennifer Daugherty; Chong-Feng Gao; Qian Xie; Cindy K. Miranti; Ermanno Gherardi; George F. Vande Woude; H. Eric Xu

Hepatocyte growth factor (HGF) activates the Met receptor tyrosine kinase by binding and promoting receptor dimerization. Here we describe a mechanistic basis for designing Met antagonists based on NK1, a natural variant of HGF containing the N-terminal and the first kringle domain. Through detailed biochemical and structural analyses, we demonstrate that both mouse and human NK1 induce Met dimerization via a conserved NK1 dimer interface. Mutations designed to alter the NK1 dimer interface abolish its ability to promote Met dimerization but retain full Met-binding activity. Importantly, these NK1 mutants act as Met antagonists by inhibiting HGF-mediated cell scattering, proliferation, branching, and invasion. The ability to separate the Met-binding activity of NK1 from its Met dimerization activity thus provides a rational basis for designing Met antagonists. This strategy of antagonist design may be applicable for other growth factor receptors by selectively abolishing the receptor activation ability but not the receptor binding of the growth factors.


Cancer Research | 2015

Hepcidin Regulation in Prostate and Its Disruption in Prostate Cancer

Lia Tesfay; Kathryn A. Clausen; Jin Woo Kim; Poornima Hegde; Xiaohong Wang; Lance D. Miller; Zhiyong Deng; Nicole L. Blanchette; Tara Arvedson; Cindy K. Miranti; Herbert Y. Lin; Donna M. Peehl; Frank M. Torti; Suzy V. Torti

Hepcidin is a circulating peptide hormone made by the liver that is a central regulator of systemic iron uptake and recycling. Here, we report that prostate epithelial cells also synthesize hepcidin, and that synthesis and secretion of hepcidin are markedly increased in prostate cancer cells and tissue. Prostatic hepcidin functions as an autocrine hormone, decreasing cell surface ferroportin, an iron exporter, increasing intracellular iron retention, and promoting prostate cancer cell survival. Synthesis of hepcidin in prostate cancer is controlled by a unique intersection of pathways that involves BMP4/7, IL6, Wnt, and the dual BMP and Wnt antagonist, SOSTDC1. Epigenetic silencing of SOSTDC1 through methylation is increased in prostate cancer and is associated with accelerated disease progression in patients with prostate cancer. These results establish a new connection between iron metabolism and prostate cancer, and suggest that prostatic dysregulation of hepcidin contributes to prostate cancer growth and progression.

Collaboration


Dive into the Cindy K. Miranti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura E. Lamb

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice Knudsen

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jelani C. Zarif

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge