Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cinzia Scialabba is active.

Publication


Featured researches published by Cinzia Scialabba.


International Journal of Pharmaceutics | 2013

Montmorillonite nanodevices for the colon metronidazole delivery

Ilaria Calabrese; Gennara Cavallaro; Cinzia Scialabba; Mariano Licciardi; Marcello Merli; Luciana Sciascia; Maria Liria Turco Liveri

The adsorption profiles of the antibiotic metronidazole (MNE) into the K10-montmorillonite (MMT-K10) clay and the subsequent release have been investigated as a function of pH and MNE/MMT-K10 ratio, in order to evaluate the potential of the MNE/MMT-K10 hybrids as controlled drug delivery system. The adsorption mechanism has been first elucidated by performing complementary equilibrium and kinetic studies and through the X-ray diffractometry (XRD) characterization of the obtained composite materials. The gathered results allowed us to propose a mechanism consisting of a multi-step pathway involving the neutral and the cationic form of the drug, which interact with different sites of the clay surfaces, i.e. the interlayer region and the faces of the lamella. In a second step the drug release kinetics has been studied under physiological pH mimicking conditions simulating the oral drug administration and delivery. For the sake of comparison the commercial formulation has also been employed for the release studies. The investigation of the release profiles and the comparison with the commercial formulation of the drug reveal that the new-tailor made formulation could be fruitful exploited for successfully prolonged the action of drug in the desired site.


Biomacromolecules | 2015

Biotin-Containing Reduced Graphene Oxide-Based Nanosystem as a Multieffect Anticancer Agent: Combining Hyperthermia with Targeted Chemotherapy.

Nicolò Mauro; Cinzia Scialabba; Gennara Cavallaro; Mariano Licciardi; Gaetano Giammona

Among the relevant properties of graphene derivatives, their ability of acting as an energy-converting device so as to produce heat (i.e., thermoablation and hyperthermia) was more recently taken into account for the treatment of solid tumors. In this pioneering study, for the first time, the in vitro RGO-induced hyperthermia was assessed and combined with the stimuli-sensitive anticancer effect of a biotinylated inulin-doxorubicin conjugate (CJ-PEGBT), hence, getting to a nanosystem endowed with synergic anticancer effects and high specificity. CJ-PEGBT was synthesized by linking pentynoic acid and citraconic acid to inulin. The citraconylamide pendants, used as pH reversible spacer, were exploited to further conjugate doxorubicin, whereas the alkyne moiety was orthogonally functionalized with an azido PEG-biotin derivative by copper(II) catalyzed 1,3-dipolar cycloaddition. DSC measures, AFM, and UV spectrophotometry were employed to systematically investigate adsorption of CJ-PEGBT onto RGO and its physicochemical stability in aqueous media, demonstrating that a stable π-staked nanosystem can be obtained. In vitro tests using cancer breast cells (MCF-7) showed the ability of the RGO/CJ-PEGBT of efficiently killing cancer cells both via a selective laser beam thermoablation and hyperthermia-triggered chemotherapy. If compared with the nonbiotinylated nanosystem, including virgin RGO and the free conjugate, RGO/CJ-PEGBT is endowed with a smart combination of properties which warrant potential as an anticancer nanomedicine.


Journal of Materials Chemistry B | 2014

Amphiphilic inulin graft co-polymers as self-assembling micelles for doxorubicin delivery

Mariano Licciardi; Cinzia Scialabba; Carla Sardo; Gennara Cavallaro; Gaetano Giammona

This paper reports the synthesis and characterization of a new amphiphilic inulin graft copolymer able to self-assemble in water into a micelle type structure and to deliver the anticancer model drug doxorubicin. For this aim, inulin was chemically modified in the side chain with primary amine groups (INU-EDA) and these were used as reactive moieties for the conjugation of poly ethylene glycol 2000 and succinyl-ceramide. The CMC of obtained amphiphilic inulin derivatives (INU-ceramide and INU-ceramide-PEG2000) was measured by means of fluorescence analysis using pyrene as the fluorescent probe. The obtained micelles were characterized by DLS and AFM analysis and the ability to release the loaded doxorubicin was studied in different media. Finally the cytotoxicity profile on both cancer (HCT116) and normal (16 HBE) cell lines and in vitro ability to deliver the drug into cancer cells were evaluated.


Molecular Pharmaceutics | 2013

Polymeric Nanocarriers for Magnetic Targeted Drug Delivery: Preparation, Characterization, and in Vitro and in Vivo Evaluation

Mariano Licciardi; Cinzia Scialabba; Calogero Fiorica; Gennara Cavallaro; Giovanni Cassata; Gaetano Giammona

In this paper the preparation of magnetic nanocarriers (MNCs), containing superparamagnetic domains, is reported, useful as potential magnetically targeted drug delivery systems. The preparation of MNCs was performed by using the PHEA-IB-p(BMA) graft copolymer as coating material through the homogenization-solvent evaporation method. Magnetic and nonmagnetic nanocarriers containing flutamide (FLU-MNCs) were prepared. The prepared nanocarriers have been exhaustively characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and magnetic measurements. Biological evaluation was performed by in vitro cytotoxicity and cell uptake tests and in vivo biodistribution studies. Magnetic nanocarriers showed dimensions of about 300 nm with a narrow size distribution, an amount of loaded FLU of 20% (w/w), and a superparamagnetic behavior. Cell culture experiments performed on prostate cancer cell line LNCaP demonstrated the cytotoxic effect of FLU-MNCs. In vivo biodistribution studies carried out by the application of an external magnetic field in rats demonstrated the effect of the external magnet on modifying the biodistribution of FLU-MNCs. FLU-MNCs resulted efficiently internalized by tumor cells and susceptible to magnetic targeting by application of an external magnetic field. The proposed nanocarriers can represent a very promising approach to obtain an efficient magnetically targeted anticancer drug delivery system.


European Journal of Pharmaceutical Sciences | 2015

Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system

Carla Sardo; Rossella Farra; Mariano Licciardi; Barbara Dapas; Cinzia Scialabba; Gaetano Giammona; Mario Grassi; Gabriele Grassi; Gennara Cavallaro

Small interfering RNAs (siRNAs) have the potential to be of therapeutic value for many human diseases. So far, however, a serious obstacle to their therapeutic use is represented by the absence of appropriate delivery systems able to protect them from degradation and to allow an efficient cellular uptake. In this work we developed a siRNA delivery system based on inulin (Inu), an abundant and natural polysaccharide. Inu was functionalized via the conjugation with diethylenetriamine (DETA) residues to form the complex Inu-DETA. We studied the size, surface charge and the shape of the Inu-DETA/siRNA complexes; additionally, the cytotoxicity, the silencing efficacy and the cell uptake-mechanisms were studied in the human bronchial epithelial cells (16HBE) and in the hepatocellular carcinoma derived cells (JHH6). The results presented here indicate that Inu-DETA copolymers can effectively bind siRNAs, are highly cytocompatible and, in JHH6, can effectively deliver functional siRNAs. Optimal delivery is observed using a weight ratio Inu-DETA/siRNA of 4 that corresponds to polyplexes with an average size of 600nm and a slightly negative surface charge. Moreover, the uptake and trafficking mechanisms, mainly based on micropinocytosis and clatrin mediated endocytosis, allow the homogeneous diffusion of siRNA within the cytoplasm of JHH6. Notably, in 16 HBE where the trafficking mechanism (caveolae mediated endocytosis) does not allow an even distribution of siRNA within the cell cytoplasm, no significant siRNA activity is observed. In conclusion, we developed a novel inulin-based siRNA delivery system able to efficiently release siRNA in JHH6 with negligible cytotoxicity thus opening the way for further testing in more complex in vivo models.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy

Cinzia Scialabba; Mariano Licciardi; Nicolò Mauro; Flavio Rocco; M. Ceruti; Gaetano Giammona

This paper deal with the synthesis and characterization of PEGylated squalene-grafted-inulin amphiphile capable of self-assembling and self-organizing into nanocarriers once placed in aqueous media. It was exploited as coating agent for obtaining doxorubicin loaded superparamagnetic iron oxide nanoparticles (SPIONs) endowed with stealth like behavior and excellent physicochemical stability. Inulin was firstly modified in the side chain with primary amine groups, followed in turn by conjugation with squalenoyl derivatives through common amidic coupling agents and PEGylation by imine linkage. Polymer coated SPIONs were so obtained by spontaneous self-assembling of inulin copolymer onto magnetite surface involving hydrophobic-hydrophobic interactions between the metallic core and the squalene moieties. The system was characterized in terms of hydrodynamic radius, zeta potential, shape and drug loading capacity. On the whole, the stealth-like shell stabilized the suspension in aqueous media, though allowing the release of the doxorubicin loaded in therapeutic range. The cytotoxicity profile on cancer (HCT116) cell line and in vitro drug uptake were evaluated both with and without an external magnetic field used as targeting agent and uptake promoter, displaying that magnetic targeting implies advantageous therapeutic effects, that is amplified drug uptake and increased anticancer activity throughout the tumor mass.


RSC Advances | 2015

Self-organized environment-sensitive inulin–doxorubicin conjugate with a selective cytotoxic effect towards cancer cells

Nicolò Mauro; Simona Campora; Cinzia Scialabba; Giorgia Adamo; Mariano Licciardi; Giulio Ghersi; Gaetano Giammona

An inulin-based random copolymer bearing high dose doxorubicin (18.45% on a weight basis), INU-EDA-P,C-DOXO, was prepared by coupling doxorubicin with inulin though a citraconylamide bridge used as a pH sensitive spacer. A further conjugation with pentynoic acid via an amidic bond led to the hydrophobization of the copolymer which allows the acquisition of a self-assembling ability at low concentration (0.33 mg mL−1) combining both Π–Π stacking and London interactions. Drug release studies were carried out at different pH demonstrating a remarkable pH dependency, where the maximum release rate was observed at pH mimicking cancer tissue and lysosomal environments. Besides, by measuring ζ-potential variations as a function of the pH, INU-EDA-P,C-DOXO proved capable of undergoing charge reversal at acidic pH, changing its physicochemical and biological behavior. In vitro tests with cancer (MDA-MB 231) and normal (HB-2) breast cells were carried out to verify the conjugate aptitude to follow different routes to enter cells depending on the microenvironment. This finding was supported by quantitative up-take studies, which revealed that INU-EDA-P,C-DOXO released doxorubicin before entering cancer cells, as the entire copolymer diffused across normal cell membranes without relevant modifications.


ACS Applied Materials & Interfaces | 2017

Near-Infrared Light Responsive Folate Targeted Gold Nanorods for Combined Photothermal-Chemotherapy of Osteosarcoma

Anna Li Volsi; Cinzia Scialabba; Valeria Vetri; Gennara Cavallaro; Mariano Licciardi; Gaetano Giammona

Folate-targeted gold nanorods (GNRs) are proposed as selective theranostic agents for osteosarcoma treatment. An amphiphilic polysaccharide based graft-copolymer (INU-LA-PEG-FA) and an amino derivative of the α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide functionalized with folic acid (PHEA-EDA-FA), have been synthesized to act as coating agents for GNRs. The obtained polymer-coated GNRs were characterized in terms of size, shape, zeta potential, chemical composition, and aqueous stability. They protected the anticancer drug nutlin-3 and were able to deliver it efficiently in different physiological media. The ability of the proposed systems to selectively kill tumor cells was tested on U2OS cancer cells expressing high levels of FRs and compared with human bronchial epithelial cells (16HBE) and human dermal fibroblasts (HDFa). The property of the nanosystems of efficiently controlling drug release upon NIR laser irradiation and of acting as an excellent hyperthermia agent as well as Two Photon Luminescence imaging contrast agents was demonstrated. The proposed folate-targeted GNRs have also been tested in terms of chemoterapeutic and thermoablation efficacy on tridimensional (3-D) osteosarcoma models.


International Journal of Pharmaceutics | 2014

An allergen-polymeric nanoaggregate as a new tool for allergy vaccination

Mariano Licciardi; Giovanna Montana; Maria Luisa Bondì; Angela Bonura; Cinzia Scialabba; Mario Melis; Calogero Fiorica; Gaetano Giammona; Paolo Colombo

A recombinant hybrid composed of the two major allergens of the Parietaria pollen Par j 1 and Par j 2 has been generated by DNA recombinant technology (PjED). This hybrid was produced in E. coli at high levels of purity. Then, the engineered derivative has been combined with a synthetic polyaminoacidic derivative having a poly(hydroxyethyl)aspartamide (PHEA) backbone and bearing both butyryl groups (C4) and succinyl (S) moieties in the side chain (PHEA-C4-S). The allergen-copolymer nanoaggregate was characterized by means of DLS, zeta potential, electrophoretic mobility and atom force microscopy analysis displaying the formation of a stable complex. Its safety has been proved in vitro on a murine cell line, human erythrocytes and basophils. Moreover, the formation of the complex did not alter the ability of the allergens to cross-link surface bound specific IgE demonstrating that the combination of an engineered hybrid with a copolymer did not interfere with its biological activity suggesting its employment as potential vaccine against Parietaria-induced allergies.


Drug Delivery | 2012

Amphiphilic polyaspartamide copolymer-based micelles for rivastigmine delivery to neuronal cells

Cinzia Scialabba; F. Rocco; Mariano Licciardi; Giovanna Pitarresi; M. Ceruti; Gaetano Giammona

A novel polysorbate-80 (PS80)-attached amphiphilic copolymer comprising a hydrophilic α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) backbone and hydrophobic squalenyl-C17 (Sq17) portions was synthesized and characterized; the formation of polymeric micelles was also evaluated. Rivastigmine free-base (Riv), a hydrophobic drug employed to treat Alzheimer’s disease, was chosen as model drug to investigate micelle’s ability to incorporate hydrophobic molecules and target them to neuronal cells. Micelle formation was studied through analyses including fluorescence spectroscopy and 2D 1H-NMR NOESY experiments. Finally, the capacity of Riv-loaded micelles, versus free drug, to penetrate mouse neuroblastoma cells (Neuro2a) was evaluated. 2D 1H-NMR NOESY experiments demonstrated that the PHEA-EDA-Sq17-PS80 copolymer self-assembles into micelle structures in water, with a micelle core formed by hydrophobic interaction between Sq17 alkyl chains. Fluorescence probe studies revealed the CAC of PHEA-EDA-Sq17-PS80 micelles, which was 0.25 mg mL−1. The micelles obtained had a nanometric hydrodynamic diameter with narrow size distribution and negative surface charge. The PHEA-EDA-Sq17-PS80 micelles incorporated a large amount of Riv, and the system maintained the stability of Riv after incubation in human plasma. An in vitro biological assay evidenced no cytotoxic effects of either empty or loaded micelles on the neuronal cell lines tested. Moreover, the micelles are internalized by neuroblastoma cell lines with drug uptake depending on the micelles concentration.

Collaboration


Dive into the Cinzia Scialabba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge