Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cirano José Ulhoa is active.

Publication


Featured researches published by Cirano José Ulhoa.


Biotechnology Letters | 2007

Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production

Fausto Bruno dos Reis Almeida; Fernanda Menezes Cerqueira; Roberto do Nascimento Silva; Cirano José Ulhoa; A. L. Lima

The genus Trichoderma is a potential biocontrol agent against several phytopathogenic fungi. One parameter for its successful use is an efficient coiling process followed by a substantial production of hydrolytic enzymes. The interaction between fifteen isolates of Trichoderma harzianum and the soil-borne plant pathogen, Rhizoctonia solani, was studied by light microscopy and transmission electron microscopy (TEM). Macroscopic observations of fungal growth in dual cultures revealed that growth inhibition of the pathogen occurred soon after contact with the antagonist. All T. harzianum isolates tested exhibited coiling around the hyphae of R. solani. The strains ALL23, ALL40, ALL41, ALL43 and ALL49 did not differ in coiling frequency and gave equal coiling performances. No correlation between coiling frequency and the production of cell wall-degrading chitinases, N-acetyl-β-d-glucosaminidase and β-1,3-glucanases, was found.


Fems Microbiology Letters | 2004

Biochemical characterization of α-amylase from the yeast Cryptococcus flavus

Kenya J Wanderley; Fernando Araripe Gonçalves Torres; Lidia Maria Pepe de Moraes; Cirano José Ulhoa

During our screening of amylolytic microorganisms from Brazilian fruits, we isolated a yeast strain classified as Cryptococcus flavus. When grown on starch-containing medium this strain exhibited the highest amylase production after 24 h of cultivation. The extracellular amylase from C. flavus was purified from the culture broth by a single step using chromatography on a Sephacryl S-100 column. The enzyme was purified 16.14-fold with a yield of 50.21% of the total activity. The purified enzyme was a glycoprotein with an apparent molecular mass of 75 and 84.5 kDa as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gel filtration, respectively. The enzyme lost approximately 50% of the molecular mass after treatment with glycosidases. The major end products of starch, amylose, amylopectin, pullulan and glycogen were maltose and maltotriose. The Km value for the pure enzyme was 0.056 mg ml−1 with soluble starch as the substrate. Enzyme activity was optimal at pH 5.5 and 50°C. The enzyme retained 90% of the activity after incubation at 50°C for 60 min and was inhibited by Cu2+, Fe2+ and Hg2+.


Fems Microbiology Letters | 2003

Purification and characterization of an exo-β-1,3-glucanase produced by Trichoderma asperellum

Maria Teresa Freitas Bara; Adilson L Lima; Cirano José Ulhoa

Trichoderma asperellum produces at least two extracellular beta-1,3-glucanases upon induction with cell walls from Rhizoctonia solani. A beta-1,3-glucanase was purified by gel filtration and ion exchange chromatography. A typical procedure provided 35.7-fold purification with 9.5% yield. The molecular mass of the purified exo-beta-1,3-glucanases was 83.1 kDa as estimated using a 12% (w/v) SDS-electrophoresis slab gel. The enzyme was only active toward glucans containing beta-1,3-linkages and hydrolyzed laminarin in an exo-like fashion to form glucose. The K(m) and V(max) values for exo-beta-1,3-glucanase, using laminarin as substrate, were 0.087 mg ml(-1) and 0.246 U min(-1), respectively. The pH optimum for the enzyme was pH 5.1 and maximum activity was obtained at 55 degrees C. Hg(2+) strongly inhibited the purified enzyme.


Fungal Biology | 2012

Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum

Fabyano Alvares Cardoso Lopes; Andrei Stecca Steindorff; A. M. Geraldine; Renata Silva Brandão; Valdirene Neves Monteiro; Murillo Lobo Junior; Alexandre Siqueira Guedes Coelho; Cirano José Ulhoa; Roberto Nascimento Silva

Some species of Trichoderma have successfully been used in the commercial biological control of fungal pathogens, e.g., Sclerotinia sclerotiorum, an economically important pathogen of common beans (Phaseolus vulgaris L.). The objectives of the present study were (1) to provide molecular characterization of Trichoderma strains isolated from the Brazilian Cerrado; (2) to assess the metabolic profile of each strain by means of Biolog FF Microplates; and (3) to evaluate the ability of each strain to antagonize S. sclerotiorum via the production of cell wall-degrading enzymes (CWDEs), volatile antibiotics, and dual-culture tests. Among 21 isolates, we identified 42.86% as Trichoderma asperellum, 33.33% as Trichoderma harzianum, 14.29% as Trichoderma tomentosum, 4.76% as Trichoderma koningiopsis, and 4.76% as Trichoderma erinaceum. Trichoderma asperellum showed the highest CWDE activity. However, no species secreted a specific group of CWDEs. Trichoderma asperellum 364/01, T. asperellum 483/02, and T. asperellum 356/02 exhibited high and medium specific activities for key enzymes in the mycoparasitic process, but a low capacity for antagonism. We observed no significant correlation between CWDE and antagonism, or between metabolic profile and antagonism. The diversity of Trichoderma species, and in particular of T. harzianum, was clearly reflected in their metabolic profiles. Our findings indicate that the selection of Trichoderma candidates for biological control should be based primarily on the environmental fitness of competitive isolates and the target pathogen.


Microbiological Research | 2010

Expression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum.

César Marcos Marcello; Andrei Stecca Steindorff; Silvana P. Silva; Roberto do Nascimento Silva; Luiz Artur Mendes Bataus; Cirano José Ulhoa

The regulation of the gene encoding the extracellular exo-beta-1,3-glucanase (tag83) produced by the mycoparasite Trichoderma asperellum was studied. Enzyme activity was detected in all carbon sources, but the highest levels were found when starch and purified cell walls from Rhizoctonia solani were used. These results are supported by the appearance of one strong band with enzyme activity in non-denaturing PAGE. Experiments using RT-PCR showed that exo-beta-1,3-glucanase induction in T. asperellum occurred at the transcriptional level. We used RT-PCR and real-time PCR analysis to examine the expression of tag83 gene during in vivo assay of T. asperellum against R. solani. We showed that the expression of tag83 is significantly increased by the presence of R. solani.


Toxicon | 2008

A hyaluronidase from Potamotrygon motoro (freshwater stingrays) venom: Isolation and characterization ☆

Marta R. Magalhães; Nelson Jorge da Silva; Cirano José Ulhoa

Freshwater stingrays (Potamotrygon motoro) are known to cause human accidents through a sting located in its tail. In the State of Goiás, this accident happens especially during the fishing season of the Araguaia River. The P. motoro venom extracted from the sting presented hyaluronidase activity. The enzyme was purified by gel filtration on Sephacryl S-100 and ion-exchange chromatography on SP-Sepharose. A typical procedure provided 376.4-fold purification with a 2.94% yield. The molecular weight of the purified enzyme was 79 kDa as estimated by gel filtration on Sephacryl S-100. The K(m) and V(max) values for hyaluronidase, using hyaluronic acid as substrate, were 4.91 microg/ml and 2.02 U/min, respectively. The pH optimum for the enzyme was pH 4.2 and maximum activity was obtained at 40 degrees C. The hyaluronidase from P. motoro was shown to be heat instable, being stabilized by bovine albumin and DTT, and inhibited by Fe(2+), Mn(2+), Cu(2+) and heparin.


BMC Genomics | 2013

Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application

Pabline Marinho Vieira; Alexandre Siqueira Guedes Coelho; Andrei Stecca Steindorff; Saulo José Linhares de Siqueira; Roberto Nascimento Silva; Cirano José Ulhoa

BackgroundThe species of T. harzianum are well known for their biocontrol activity against many plant pathogens. However, there is a lack of studies concerning its use as a biological control agent against F. solani, a pathogen involved in several crop diseases. In this study, we have used subtractive library hybridization (SSH) and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum genes expression during growth on cell wall of F. solani (FSCW) or glucose. RT-qPCR was also used to examine the regulation of 18 genes, potentially involved in biocontrol, during confrontation between T. harzianum and F. solani.ResultsData obtained from two subtractive libraries were compared after annotation using the Blast2GO suite. A total of 417 and 78 readable EST sequence were annotated in the FSCW and glucose libraries, respectively. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on FSCW or glucose. We identified various genes of biotechnological value encoding to proteins which function such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. Fifteen genes were up-regulated and sixteen were down-regulated at least at one-time point during growth of T. harzianum in FSCW. During the confrontation assay most of the genes were up-regulated, mainly after contact, when the interaction has been established.ConclusionsThis study demonstrates that T. harzianum expressed different genes when grown on FSCW compared to glucose. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against F. solani. The identification and evaluation of these genes may contribute to the development of an efficient biological control agent.


BMC Genomics | 2014

Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum

Andrei Stecca Steindorff; Marcelo Henrique Soller Ramada; Alexandre Siqueira Guedes Coelho; Robert Neil Gerard Miller; Georgios Joannis Pappas; Cirano José Ulhoa; Eliane Ferreira Noronha

BackgroundThe species of T. harzianum are well known for their biocontrol activity against plant pathogens. However, few studies have been conducted to further our understanding of its role as a biological control agent against S. sclerotiorum, a pathogen involved in several crop diseases around the world. In this study, we have used RNA-seq and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum gene expression during growth on cell wall of S. sclerotiorum (SSCW) or glucose. RT-qPCR was also used to examine genes potentially involved in biocontrol, during confrontation between T. harzianum and S. sclerotiorum.ResultsData obtained from six RNA-seq libraries were aligned onto the T. harzianum CBS 226.95 reference genome and compared after annotation using the Blast2GO suite. A total of 297 differentially expressed genes were found in mycelia grown for 12, 24 and 36 h under the two different conditions: supplemented with glucose or SSCW. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on SSCW or glucose. We identified various genes of biotechnological value encoding proteins with functions such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. To validate the expression profile, RT-qPCR was performed using 20 randomly chosen genes. RT-qPCR expression profiles were in complete agreement with the RNA-Seq data for 17 of the genes evaluated. The other three showed differences at one or two growth times. During the confrontation assay, some genes were up-regulated during and after contact, as shown in the presence of SSCW which is commonly used as a model to mimic this interaction.ConclusionsThe present study is the first initiative to use RNA-seq for identification of differentially expressed genes in T. harzianum strain TR274, in response to the phytopathogenic fungus S. sclerotiorum. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against S.sclerotiorum. The RNA-seq data presented will facilitate improvement of the annotation of gene models in the draft T. harzianum genome and provide important information regarding the transcriptome during this interaction.


Biotechnology Letters | 2013

Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production

Thiago Fernandes Qualhato; Fabyano Alvares Cardoso Lopes; Andrei Stecca Steindorff; Renata Silva Brandão; Rosália Santos Amorim Jesuíno; Cirano José Ulhoa

Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.


Current Microbiology | 2006

Biochemical Characterization of a β-1,3-Glucanase from Trichoderma koningii Induced by Cell Wall of Rhizoctonia solani

Valdirene Neves Monteiro; Cirano José Ulhoa

Trichoderma species are readily isolated from Brazilian cerrado soil by conventional methods and some of them were characterized as Trichoderma koningii. The effect of carbon source on the production of β-1,3-glucanases in the culture filtrates of a specific Trichoderma koningii strain (ALL 13) was investigated. Enzyme activity was detected in all carbon sources tested and only one band of β-1,3-glucanase was detected in non-denaturing PAGE. This enzyme was purified by Sephacryl S-200 gel filtration and Phenyl Sepharose CL 4B chromatography. A typical procedure provided 105-fold purification with 13.4% yield. The molecular weight of the purified enzyme was 75 kDa as estimated by SDS-PAGE. The enzyme hydrolyzed laminarin in an endo-like fashion to form small oligosaccharides and glucose. The Km and Vmax values for β-1,3-glucanase, using laminarin as substrate, were 0.148 mg.mL−1 and 0.159 U.min−1, respectively. The pH optimum for the enzyme was pH 4.6 and maximum activity was obtained at 50°C. Hg2+ inhibited the purified enzyme.

Collaboration


Dive into the Cirano José Ulhoa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Arnhold

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Marcelo Henrique Soller Ramada

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge