Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Brockett is active.

Publication


Featured researches published by Claire Brockett.


Journal of Bone and Joint Surgery-british Volume | 2009

Ceramic-on-metal bearings in total hip replacement: whole blood metal ion levels and analysis of retrieved components.

Graham Isaac; Claire Brockett; A. Breckon; D van der Jagt; Sophie Williams; Catherine Hardaker; John Fisher; A. Schepers

This study reports on ceramic-on-metal (CoM) bearings in total hip replacement. Whole blood metal ion levels were measured. The median increase in chromium and cobalt at 12 months was 0.08 microg/1 and 0.22 microg/1, respectively, in CoM bearings. Comparable values for metal-on-metal (MoM) were 0.48 microg/1 and 0.32 microg/1. The chromium levels were significantly lower in CoM than in MoM bearings (p = 0.02). The cobalt levels were lower, but the difference was not significant. Examination of two explanted ceramic heads revealed areas of thin metal transfer. CoM bearings (one explanted head and acetabular component, one explanted head and new acetabular component, and three new heads and acetabular components) were tested in a hip joint simulator. The explanted head and acetabular component had higher bedding-in. However, after one million cycles all the wear rates were the same and an order of magnitude less than that reported for MoM bearings. There were four outliers in each clinical group, primarily related to component malposition.


Journal of Biomechanics | 2011

Computational wear prediction of artificial knee joints based on a new wear law and formulation.

Abdellatif Abdelgaied; Feng Liu; Claire Brockett; Louise Jennings; John Fisher; Zhongmin Jin

Laboratory joint wear simulator testing has become the standard means for preclinical evaluation of wear resistance of artificial knee joints. Recent simulator designs have been advanced and become successful at reproducing the wear patterns observed in clinical retrievals. However, a single simulator test can be very expensive and take a long time to run. On the other hand computational wear modelling is an alternative attractive solution to these limitations. Computational models have been used extensively for wear prediction and optimisation of artificial knee designs. However, all these models have adopted the classical Archards wear law, which was developed for metallic materials, and have selected wear factors arbitrarily. It is known that such an approach is not generally true for polymeric bearing materials and is difficult to implement due to the high dependence of the wear factor on the contact pressure. Therefore, these studies are generally not independent and lack general predictability. The objective of the present study was to develop a new computational wear model for the knee implants, based on the contact area and an independent experimentally determined non-dimensional wear coefficient. The effects of cross-shear and creep on wear predictions were also considered. The predicted wear volume was compared with the laboratory simulation measurements. The model was run under two different kinematic inputs and two different insert designs with curved and custom designed flat bearing surfaces. The new wear model was shown to be capable of predicting the difference of the wear volume and wear pattern between the two kinematic inputs and the two tibial insert designs. Conversely, the wear factor based approach did not predict such differences. The good agreement found between the computational and experimental results, on both the wear scar areas and volumetric wear rates, suggests that the computational wear modelling based on the new wear law and the experimentally calculated non-dimensional wear coefficient should be more reliable and therefore provide a more robust virtual modelling platform.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2008

Comparison of wear of ultra-high molecular weight polyethylene acetabular cups against surface-engineered femoral heads.

Alison L. Galvin; Claire Brockett; Sophie Williams; Peter Hatto; Andrew Burton; Graham Isaac; Martin H. Stone; Eileen Ingham; John Fisher

Alumina ceramic heads have been previously shown to reduce polyethylene wear in comparison to cobalt chrome (CoCr) heads in artificial hip joints. However, there are concerns about the brittle nature of ceramics. It is therefore of interest to investigate ceramic-like coatings on metallic heads. The aim of this study was to compare the friction and wear of ultra-high molecular weight polyethylene (UHMWPE) against alumina ceramic, CoCr, and surface-engineered ceramic-like coatings in a friction simulator and a hip joint simulator. All femoral heads tested were 28 mm diameter and included: Biolox™ Forte alumina, CoCr, arc evaporative physical vapour deposition (AEPVD) chromium nitride (CrN) coated CoCr, plasma-assisted chemical vapour deposition (PACVD) amorphous diamond-like carbon (aDLC) coated CoCr, sputter CrN coated CoCr, reactive gas controlled arc (RGCA) AEPVD titanium nitride (TiN) coated CoCr, and Graphit-iC™ coated CoCr. These were articulated against UHMWPE acetabular cups in a friction simulator and a hip joint simulator. Alumina and CoCr gave the lowest wear volumes whereas the sputter coated CrN gave the highest. Alumina also had the lowest friction factor. There was an association between surface parameters and wear. This study indicates that surface topography of surface-engineered femoral heads is more important than friction and wettability in controlling UHMWPE wear.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2011

The wear of fixed and mobile bearing unicompartmental knee replacements.

Claire Brockett; Louise Jennings; John Fisher

Unicompartmental knee replacements (UKR) are an option for surgical intervention for the treatment of single-compartment osteoarthritis. The aim of this study was to compare the wear of a low-conformity fixed-bearing UKR with a conforming mobile bearing UKR under two kinematic conditions, to investigate the effect of implant design and kinematics on wear performance in a physiological knee wear simulator. Under both sets of kinematic conditions, the relatively low-conforming fixed UKR showed lower wear, compared with the more conforming anterior-posterior sliding mobile bearing. However, it should be noted that differences in materials between the two designs also contribute to the relative wear performance of the bearings. The combined wear of the medial and lateral bearings of the fixed-bearing UKR as a ‘total knee’ were significantly reduced compared with a fixed-bearing total knee replacement studied under the same kinematic conditions.


Physics in Medicine and Biology | 2008

Lubrication and friction prediction in metal-on-metal hip implants

F. C. Wang; Claire Brockett; Sophie Williams; Itoro Udofia; John Fisher; Z M Jin

A general methodology of mixed lubrication analysis and friction prediction for a conforming spherical bearing in hip implants was developed, with particular reference to a typical metal-on-metal hip replacement. Experimental measurement of frictional torque for a similar implant was carried out to validate the theoretical prediction. A ball-in-socket configuration was adopted to represent the articulation between the femoral head and the acetabular cup under cyclic operating conditions of representative load and motion. The mixed lubrication model presented in this study was first applied to identify the contact characteristics on the bearing surfaces, consisting of both fluid-film and boundary lubricated regions. The boundary lubricated contact was assumed to occur when the predicted fluid film thickness was less than a typical boundary protein layer absorbed on the bearing surfaces. Subsequently, the friction was predicted from the fluid-film lubricated region with viscous shearing due to both Couette and Poiseuille flows and the boundary protein layer contact region with a constant coefficient of friction. The predicted frictional torque of the typical metal-on-metal hip joint implant was compared with the experimental measurement conducted in a functional hip simulator and a reasonably good agreement was found. The mixed lubrication regime was found to be dominant for the conditions considered. Although the percentage of the boundary lubricated region was quite small, the corresponding contribution to friction was quite large and the resultant friction factor was quite high.


Journal of Arthroplasty | 2013

Squeaking Hip Arthroplasties : A Tribological Phenomenon

Claire Brockett; Sophie Williams; Zhongmin Jin; Graham Isaac; John Fisher

The clinical incidence of squeaking has been reported with increasing frequency, with ceramic-on-ceramic bearings seemingly most affected. This study investigated potential causes of squeaking in hard-on-hard hip bearings through 2 sets of experimental conditions. Bearing clearance appeared to affect the incidence of squeaking in metal-on-metal surface arthroplasties. The addition of third-body particles to the interface for total hip arthroplasties also affected the incidence of squeaking. In both studies, the incidence of squeaking correlated well with elevated friction. The findings of this study suggest that a likely cause of squeaking in the hip arthroplasty is adverse tribological conditions caused by suboptimal lubrication. There are numerous factors that may cause the suboptimal lubrication, and therefore, it is unlikely that an individual cause for squeaking will be identified.


Journal of Arthroplasty | 2012

In Vitro Comparison of Fixed- and Mobile Meniscal-Bearing Unicondylar Knee Arthroplasties Effect of Design, Kinematics, and Condylar Liftoff

Andrew Burton; Sophie Williams; Claire Brockett; John Fisher

Unicondylar knee arthroplasty (UKA) has become a popular alternative to total knee arthroplasty or high tibial osteotomy for unicompartmental knee conditions. This study investigated the effects of kinematics and femoral liftoff on the wear of fixed and mobile versions of a UKA design. The fixed bearing had lower wear than the mobile bearing under all conditions. Wear was higher in lateral bearings than medial bearings, indicating that the increased sliding distance laterally had a greater effect than the greater loading medially. Femoral condylar liftoff resulted in increased wear in the medial UKAs but reduced wear in the lateral UKAs for both the bearing designs. The reduced wear rates observed for the fixed UKA bearings highlight the potential for a longer osteolysis-free clinical outcome for these devices.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2013

Quantification of the effect of cross-shear and applied nominal contact pressure on the wear of moderately cross-linked polyethylene

Abdellatif Abdelgaied; Claire Brockett; Feng Liu; Louise Jennings; John Fisher; Zhongmin Jin

Polyethylene wear is a great concern in total joint replacement. It is now considered a major limiting factor to the long life of such prostheses. Cross-linking has been introduced to reduce the wear of ultra-high-molecular-weight polyethylene (UHMWPE). Computational models have been used extensively for wear prediction and optimization of artificial knee designs. However, in order to be independent and have general applicability and predictability, computational wear models should be based on inputs from independent experimentally determined wear parameters (wear factors or wear coefficients). The objective of this study was to investigate moderately cross-linked UHMWPE, using a multidirectional pin-on-plate wear test machine, under a wide range of applied nominal contact pressure (from 1 to 11 MPa) and under five different kinematic inputs, varying from a purely linear track to a maximum rotation of ±55°. A computational model, based on a direct simulation of the multidirectional pin-on-plate wear tester, was developed to quantify the degree of cross-shear (CS) of the polyethylene pins articulating against the metallic plates. The moderately cross-linked UHMWPE showed wear factors less than half of that reported in the literature for the conventional UHMWPE, under the same loading and kinematic inputs. In addition, under high applied nominal contact stress, the moderately cross-linked UHMWPE wear showed lower dependence on the degree of CS compared to that under low applied nominal contact stress. The calculated wear coefficients were found to be independent of the applied nominal contact stress, in contrast to the wear factors that were shown to be highly pressure dependent. This study provided independent wear data for inputs into computational models for moderately cross-linked polyethylene and supported the application of wear coefficient–based computational wear models.


Orthopaedics and Trauma | 2012

iv) Enhancing the safety and reliability of joint replacement implants

Louise Jennings; Mazen Al-Hajjar; Claire Brockett; Sophie Williams; Joanne L. Tipper; Eileen Ingham; John Fisher

A new Stratified Approach For Enhanced Reliability (SAFER) pre-clinical simulation testing of joint prostheses is presented in this article. The aim of this approach is preclinical systematic testing of wear performance in the much wider envelope of conditions found clinically rather than relying only on the standard testing conditions that are currently used. The approach includes variations in surgical delivery, variations in kinematics, variations in the patient population and degradation of the biomaterial properties. Clinical experience of existing prostheses has been used to validate the new in vitro methods.


Orthopaedics and Trauma | 2016

Biomechanics of the ankle

Claire Brockett; Graham J. Chapman

This paper provides an introduction to the biomechanics of the ankle, introducing the bony anatomy involved in motion of the foot and ankle. The complexity of the ankle anatomy has a significant influence on the biomechanical performance of the joint, and this paper discusses the motions of the ankle joint complex, and the joints at which it is proposed they occur. It provides insight into the ligaments that are critical to the stability and function of the ankle joint. It describes the movements involved in a normal gait cycle, and also highlights how these may change as a result of surgical intervention such as total joint replacement or fusion.

Collaboration


Dive into the Claire Brockett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge