Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Colas is active.

Publication


Featured researches published by Claire Colas.


Biochemistry | 2015

Structure-Based Identification of Inhibitors for the SLC13 Family of Na+/Dicarboxylate Cotransporters

Claire Colas; Ana M. Pajor; Avner Schlessinger

In mammals, citric acid cycle intermediates play a key role in regulating various metabolic processes, such as fatty acid synthesis and glycolysis. Members of the sodium-dependent SLC13 transporter family mediate the transport of di- and tricarboxylates into cells. SLC13 family members have been implicated in lifespan extension and resistance to high-fat diets; thus, they are emerging drug targets for aging and metabolic disorders. We previously characterized key structural determinants of substrate and cation binding for the human NaDC3/SLC13A3 transporter using a homology model. Here, we combine computational modeling and virtual screening with functional and biochemical testing, to identify nine previously unknown inhibitors for multiple members of the SLC13 family from human and mouse. Our results reveal previously unknown substrate selectivity determinants for the SLC13 family, including key residues that mediate ligand binding and transport, as well as promiscuous and specific SLC13 small molecule ligands. The newly discovered ligands can serve as chemical tools for further characterization of the SLC13 family or as lead molecules for the future development of potent inhibitors for the treatment of metabolic diseases and aging. Our results improve our understanding of the structural components that are important for substrate specificity in this physiologically important family as well as in other structurally related transport systems.


Journal of Biological Chemistry | 2014

Determinants of substrate and cation transport in the human Na +/dicarboxylate cotransporter NaDC3

Avner Schlessinger; Nina N. Sun; Claire Colas; Ana M. Pajor

Background: NaDC3 transports important metabolic intermediates, including succinate and citrate, into cells. Results: We describe the NaDC3 structure and mode of substrate interaction using molecular modeling followed by experimental testing. Conclusion: The model identifies high-affinity substrate and sodium binding sites in NaDC3. Significance: The results improve our understanding of substrate binding and substrate preferences in the SLC13/DASS transporters. Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na+-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na+/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In addition to citric acid cycle intermediates such as α-ketoglutarate and succinate, NaDC3 transports other compounds into cells, including N-acetyl aspartate, mercaptosuccinate, and glutathione, in keeping with its dual roles in cell nutrition and detoxification. In this study, we construct a homology structural model of NaDC3 on the basis of the structure of the Vibrio cholerae homolog vcINDY. Our computations are followed by experimental testing of the predicted NaDC3 structure and mode of interaction with various substrates. The results of this study show that the substrate and cation binding domains of NaDC3 are composed of residues in the opposing hairpin loops and unwound portions of adjacent helices. Furthermore, these results provide a possible explanation for the differential substrate specificity among dicarboxylate transporters that underpin their diverse biological roles in metabolism and detoxification. The structural model of NaDC3 provides a framework for understanding substrate selectivity and the Na+-coupled anion transport mechanism by the human SLC13 family and other key solute carrier transporters.


Molecular Medicine | 2016

Mutations in the Na(+)/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay.

Jenna Klotz; Brenda E. Porter; Claire Colas; Avner Schlessinger; Ana M. Pajor

Mutations in the SLC13A5 gene that codes for the Na+/citrate cotransporter, NaCT, are associated with early onset epilepsy, developmental delay and tooth dysplasia in children. In this study, we identify additional SLC13A5 mutations in nine epilepsy patients from six families. To better characterize the syndrome, families with affected children answered questions about the scope of illness and the treatment strategies. Currently, there are no effective treatments, but some antiepileptic drugs targeting the γ-aminobutyric acid system reduce seizure frequency. Acetazolamide, a carbonic anhydrase inhibitor and atypical antiseizure medication, decreases seizures in four patients. In contrast to previous reports, the ketogenic diet and fasting resulted in worsening of symptoms. The effects of the mutations on NaCT transport function and protein expression were examined by transient transfections of COS-7 cells. There was no transport activity from any of the mutant transporters, although some of the mutant transporter proteins were present on the plasma membrane. The structural model of NaCT suggests that these mutations can affect helix packing or substrate binding. We tested various treatments, including chemical chaperones and low temperatures, but none improved transport function in the NaCT mutants. Interestingly, coexpression of NaCT and the mutants results in decreased protein expression and activity of the wild-type transporter, indicating functional interaction. In conclusion, this study has identified additional SLC13A5 mutations in patients with chronic epilepsy starting in the neonatal period, with the mutations producing inactive Na+/citrate transporters.


Bioorganic & Medicinal Chemistry Letters | 2016

LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates

Arik A. Zur; Huan-Chieh Chien; Evan Augustyn; Andrew Flint; Nathan Heeren; Karissa Finke; Christopher Hernandez; Logan Hansen; Sydney Miller; Lawrence Lin; Kathleen M. Giacomini; Claire Colas; Avner Schlessinger; Allen A. Thomas

Large neutral amino acid transporter 1 (LAT1) is a solute carrier protein located primarily in the blood-brain barrier (BBB) that offers the potential to deliver drugs to the brain. It is also up-regulated in cancer cells, as part of a tumors increased metabolic demands. Previously, amino acid prodrugs have been shown to be transported by LAT1. Carboxylic acid bioisosteres may afford prodrugs with an altered physicochemical and pharmacokinetic profile than those derived from natural amino acids, allowing for higher brain or tumor levels of drug and/or lower toxicity. The effect of replacing phenylalanines carboxylic acid with a tetrazole, acylsulfonamide and hydroxamic acid (HA) bioisostere was examined. Compounds were tested for their ability to be LAT1 substrates using both cis-inhibition and trans-stimulation cell assays. As HA-Phe demonstrated weak substrate activity, its structure-activity relationship (SAR) was further explored by synthesis and testing of HA derivatives of other LAT1 amino acid substrates (i.e., Tyr, Leu, Ile, and Met). The potential for a false positive in the trans-stimulation assay caused by parent amino acid was evaluated by conducting compound stability experiments for both HA-Leu and the corresponding methyl ester derivative. We concluded that HAs are transported by LAT1. In addition, our results lend support to a recent account that amino acid esters are LAT1 substrates, and that hydrogen bonding may be as important as charge for interaction with the transporter binding site.


Bioorganic & Medicinal Chemistry Letters | 2016

LAT-1 activity of meta-substituted phenylalanine and tyrosine analogs.

Evan Augustyn; Karissa Finke; Arik A. Zur; Logan Hansen; Nathan Heeren; Huan-Chieh Chien; Lawrence Lin; Kathleen M. Giacomini; Claire Colas; Avner Schlessinger; Allen A. Thomas

The transporter protein Large-neutral Amino Acid Transporter 1 (LAT-1, SLC7A5) is responsible for transporting amino acids such as tyrosine and phenylalanine as well as thyroid hormones, and it has been exploited as a drug delivery mechanism. Recently its role in cancer has become increasingly appreciated, as it has been found to be up-regulated in many different tumor types, and its expression levels have been correlated with prognosis. Substitution at the meta position of aromatic amino acids has been reported to increase affinity for LAT-1; however, the SAR for this position has not previously been explored. Guided by newly refined computational models of the binding site, we hypothesized that groups capable of filling a hydrophobic pocket would increase binding to LAT-1, resulting in improved substrates relative to parent amino acid. Tyrosine and phenylalanine analogs substituted at the meta position with halogens, alkyl and aryl groups were synthesized and tested in cis-inhibition and trans-stimulation cell assays to determine activity. Contrary to our initial hypothesis we found that lipophilicity was correlated with diminished substrate activity and increased inhibition of the transporter. The synthesis and SAR of meta-substituted phenylalanine and tyrosine analogs is described.


Bioorganic & Medicinal Chemistry Letters | 2014

Pro-apoptotic meiogynin A derivatives that target Bcl-xL and Mcl-1

Sandy Desrat; A Pujals; Claire Colas; Jérémy Dardenne; Charlotte Gény; Loëtitia Favre; Vincent Dumontet; Bogdan I. Iorga; Marc Litaudon; Martine Raphael; Joëlle Wiels; Fanny Roussi

The biological evaluation of a natural sesquiterpene dimer meiogynin A 1, is described as well as that of five non-natural analogues. Although active on a micromolar range on the inhibition of Bcl-xL/Bak and Mcl-1/Bid interaction, meiogynin A 1 is not cytotoxic on three cell lines that overexpress Bcl-xL and Mcl-1. Contrarily, one of its analogues 6 with an inverted configuration on the side chain and an aromatic moiety replacing the cyclohexane ring was active on both target proteins, cytotoxic on a micromolar range and was found to induce apoptosis through a classical pathway.


Molecular Pharmaceutics | 2017

Chemical Modulation of the Human Oligopeptide Transporter 1, hPepT1

Claire Colas; Masayuki Masuda; Kazuaki Sugio; Seiji Miyauchi; Yongjun Hu; David E. Smith; Avner Schlessinger

In humans, peptides derived from dietary proteins and peptide-like drugs are transported via the proton-dependent oligopeptide transporter hPepT1 (SLC15A1). hPepT1 is located across the apical membranes of the small intestine and kidney, where it serves as a high-capacity low-affinity transporter of a broad range of di- and tripeptides. hPepT1 is also overexpressed in the colon of inflammatory bowel disease (IBD) patients, where it mediates the transport of harmful peptides of bacterial origin. Therefore, hPepT1 is a drug target for prodrug substrates interacting with intracellular proteins or inhibitors blocking the transport of toxic bacterial products. In this study, we construct multiple structural models of hPepT1 representing different conformational states that occur during transport and inhibition. We then identify and characterize five ligands of hPepT1 using computational methods, such as virtual screening and QM-polarized ligand docking (QPLD), and experimental testing with uptake kinetic measurements and electrophysiological assays. Our results improve our understanding of the substrate and inhibitor specificity of hPepT1. Furthermore, the newly discovered ligands exhibit unique chemotypes, providing a framework for developing tool compounds with optimal intestinal absorption as well as future IBD therapeutics against this emerging drug target.


Bioorganic & Medicinal Chemistry Letters | 2017

Structure activity relationships of benzylproline-derived inhibitors of the glutamine transporter ASCT2

Kurnvir Singh; Rose Tanui; Armanda Gameiro; Gilad Eisenberg; Claire Colas; Avner Schlessinger; Christof Grewer

The glutamine transporter ASCT2 has been identified as a promising target to inhibit rapid growth of cancer cells. However, ASCT2 pharmacology is not well established. In this report, we performed a systematic structure activity analysis of a series of substituted benzylproline derivatives. Substitutions on the phenyl ring resulted in compounds with characteristics of ASCT2 inhibitors. Apparent binding affinity increased with increasing hydrophobicity of the side chain. In contrast, interaction of the ASCT2 binding site with specific positions on the phenyl ring was not observed. The most potent compound inhibits the ASCT2 anion conductance with a Ki of 3μM, which is in the same range as that of more bulky and higher molecular weight inhibitors recently reported by others. The experimental results are consistent with computational analysis based on docking of the inhibitors against an ASCT2 homology model. The benzylproline scaffold provides a valuable tool for further improving binding potency of future ASCT2 inhibitors.


Biochemistry | 2017

Mapping Functionally Important Residues in the Na+/Dicarboxylate Cotransporter, NaDC1

Claire Colas; Avner Schlessinger; Ana M. Pajor

Transporters from the SLC13 family couple the transport of two to four Na+ ions with a di- or tricarboxylate, such as succinate or citrate. We have previously modeled mammalian members of the SLC13 family, including the Na+/dicarboxylate cotransporter NaDC1 (SLC13A2), based on a structure of the bacterial homologue VcINDY in an inward-facing conformation with one sodium ion bound at the Na1 site. In the study presented here, we modeled the outward-facing conformation of rabbit and human NaDC1 (rbNaDC1 and hNaDC1, respectively) using an outward-facing model of VcINDY as a template and identified residues in or near the putative Na2 and Na3 cation binding sites. Guided by the structural models in both conformations, we performed site-directed mutagenesis in rbNaDC1 for residues proposed to be in the Na+ or substrate binding sites. Cysteine substitution of T474 in the predicted Na2 binding site results in an inactive protein. The M539C mutant has a low apparent affinity for both sodium and lithium cations, suggesting that M539 may form part of the putative Na3 binding site. The Y432C and T86C mutants have increased Km values for succinate, supporting their proposed location in the outward-facing substrate binding site. In addition, cysteine labeling by MTSEA-biotin shows that Y432C is accessible from the outside of the cell, and the accessibility changes in the presence or absence of Na+. The results of this study improve our understanding of substrate and ion recognition in the mammalian members of the SLC13 family and provide a framework for developing conformationally specific inhibitors against these transporters.


Chemistry & Biology | 2016

Computing Substrate Selectivity in a Peptide Transporter.

Claire Colas; David E. Smith; Avner Schlessinger

The human proton-coupled peptide transporter 1 (PepT1) is responsible for the absorption of di- and tri-peptides from the diet and peptide-like drugs. In this issue of Cell Chemical Biology, Samsudin et al. (2016) use an integrated computational and experimental approach to provide new insights into understanding substrate selectivity of PepTSt, a prokaryotic homolog of the human PepT1.

Collaboration


Dive into the Claire Colas's collaboration.

Top Co-Authors

Avatar

Avner Schlessinger

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana M. Pajor

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Bogdan I. Iorga

Institut de Chimie des Substances Naturelles

View shared research outputs
Top Co-Authors

Avatar

Allen A. Thomas

University of Nebraska at Kearney

View shared research outputs
Top Co-Authors

Avatar

Arik A. Zur

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan Augustyn

University of Nebraska at Kearney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karissa Finke

University of Nebraska at Kearney

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge