Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Halpin is active.

Publication


Featured researches published by Claire Halpin.


Nature Biotechnology | 2002

Field and pulping performances of transgenic trees with altered lignification

Gilles Pilate; Emma Guiney; Karen Holt; Michel Petit-Conil; Catherine Lapierre; Jean-Charles Leplé; Brigitte Pollet; Isabelle Mila; E. A. Webster; Håkan Marstorp; David W. Hopkins; Lise Jouanin; Wout Boerjan; Wolfgang Schuch; Daniel Cornu; Claire Halpin

The agronomic and pulping performance of transgenic trees with altered lignin has been evaluated in duplicated, long-term field trials. Poplars expressing cinnamyl alcohol dehydrogenase (CAD) or caffeate/5-hydroxy-ferulate O-methyltransferase (COMT) antisense transgenes were grown for four years at two sites, in France and England. The trees remained healthy throughout the trial. Growth indicators and interactions with insects were normal. No changes in soil microbial communities were detected beneath the transgenic trees. The expected modifications to lignin were maintained in the transgenics over four years, at both sites. Kraft pulping of tree trunks showed that the reduced-CAD lines had improved characteristics, allowing easier delignification, using smaller amounts of chemicals, while yielding more high-quality pulp. This work highlights the potential of engineering wood quality for more environmentally benign papermaking without interfering with tree growth or fitness.


Critical Reviews in Biochemistry and Molecular Biology | 2003

Lignin: genetic engineering and impact on pulping.

Marie Baucher; Claire Halpin; Michel Petit-Conil; Wout Boerjan

Lignin is a major component of wood, the most widely used raw material for the production of pulp and paper. Although the biochemistry and molecular biology underpinning lignin production are better understood than they are for the other wood components, recent work has prompted a number of re-evaluations of the lignin biosynthetic pathway. Some of the work on which these revisions have been based involved the investigation of transgenic plants with modified lignin biosynthesis. In addition to their value in elucidating the lignin biosynthetic pathway, such transgenic plants are also being produced with the aim of improving plant raw materials for pulp and paper production. This review describes how genetic engineering has yielded new insights into how the lignin biosynthetic pathway operates and demonstrates that lignin can be improved to facilitate pulping. The current technologies used to produce paper are presented in this review, followed by a discussion of the impact of lignin modification on pulp production. Fine-tuned modification of lignin content, composition, or both is now achievable and could have important economic and environmental benefits.


Science | 2013

Caffeoyl Shikimate Esterase (CSE) Is an Enzyme in the Lignin Biosynthetic Pathway in Arabidopsis

Ruben Vanholme; Igor Cesarino; Katarzyna Rataj; Yuguo Xiao; Lisa Sundin; Geert Goeminne; Hoon Kim; Joanna Cross; Kris Morreel; Pedro Araújo; Lydia Welsh; Jurgen Haustraete; Christopher McClellan; Bartel Vanholme; John Ralph; Gordon G. Simpson; Claire Halpin; Wout Boerjan

Lignin Biosynthesis Complications Lignin is a polymer that lends its sturdy properties to wood and makes plant cell walls tougher, which creates problems for chemists converting cellulosic plant biomass into biofuels. Vanholme et al. (p. 1103, published online 15 August; see the cover) have identified a new step in the biosynthetic pathway of lignin in Arabidopsis in which caffeoyl shikimate esterase catalyzes synthesis of caffeate. Cellulose from mutant plants, which had reduced amounts of lignin, was more efficiently processed into glucose. A key enzyme involved in lignin biosynthesis is identified and characterized in the model plant Arabidopsis. Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.


The Plant Cell | 2012

A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis

Ruben Vanholme; Veronique Storme; Bartel Vanholme; Lisa Sundin; Jørgen Holst Christensen; Geert Goeminne; Claire Halpin; Antje Rohde; Kris Morreel; Wout Boerjan

The combination of metabolomics and transcriptomics on Arabidopsis thaliana lines mutated in 10 steps of the lignin pathway provides insight into monolignol biosynthesis and the metabolic network in which it is embedded. In addition, this work reveals novel pathways and genes associated with lignin biosynthesis. Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant’s response to lignin perturbations. To this end, inflorescence stems of 20 Arabidopsis thaliana mutants, each mutated in a single gene of the lignin biosynthetic pathway (phenylalanine ammonia-lyase1 [PAL1], PAL2, cinnamate 4-hydroxylase [C4H], 4-coumarate:CoA ligase1 [4CL1], 4CL2, caffeoyl-CoA O-methyltransferase1 [CCoAOMT1], cinnamoyl-CoA reductase1 [CCR1], ferulate 5-hydroxylase [F5H1], caffeic acid O-methyltransferase [COMT], and cinnamyl alcohol dehydrogenase6 [CAD6], two mutant alleles each), were analyzed by transcriptomics and metabolomics. A total of 566 compounds were detected, of which 187 could be tentatively identified based on mass spectrometry fragmentation and many were new for Arabidopsis. Up to 675 genes were differentially expressed in mutants that did not have any obvious visible phenotypes. Comparing the responses of all mutants indicated that c4h, 4cl1, ccoaomt1, and ccr1, mutants that produced less lignin, upregulated the shikimate, methyl-donor, and phenylpropanoid pathways (i.e., the pathways supplying the monolignols). By contrast, f5h1 and comt, mutants that provoked lignin compositional shifts, downregulated the very same pathways. Reductions in the flux to lignin were associated with the accumulation of various classes of 4-O- and 9-O-hexosylated phenylpropanoids. By combining metabolomic and transcriptomic data in a correlation network, system-wide consequences of the perturbations were revealed and genes with a putative role in phenolic metabolism were identified. Together, our data provide insight into lignin biosynthesis and the metabolic network it is embedded in and provide a systems view of the plant’s response to pathway perturbations.


Planta | 1992

Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem

Deborah Goffner; I. Joffroy; Jacqueline Grima-Pettenati; Claire Halpin; Mary E. Knight; Wolfgang Schuch; Annie Boudet

Two distinct isoforms of cinnamyl alcohol dehydrogenase, CAD 1 and CAD 2, have been purified to homogeneity from xylem-enriched fractions of Eucalyptus gunii Hook and partially characterized. They differ greatly in terms of both physical and biochemical properties, and can be separated by hydrophobic interaction chromatography on Phenyl Sepharose CL-4B. The native molecular weight of of CAD 1 is 38 kDa as determined by gel-filtration chromatography on Superose 6, and this isoform is likely to be a monomer since it yields a polypeptide of 35 kDa upon sodium dodecyl sulfatepolyacrylamide gel electrophoresis. It has a low substrate affinity for coniferyl and p-coumaryl alcohols and their corresponding aldehydes. No activity with sinapyl aldehyde and alcohol was detected. The more abundant isoform is CAD 2, which has a native molecular weight of 83 kDa and is a dinier composed of two subunits of slightly different molecular weights (42–43 kDa). These subunits show identical peptide patterns after digestion with N-chlorosuccinimide. The isoform, CAD 2, has a high substrate affinity for all the substrates tested. The two isoforms are immunologically distinct as polyclonal antibodies raised against CAD 2 do not cross-react with CAD 1. The characterization of two forms of CAD exhibiting such marked differences indicates their involvement in specific pathways of monolignol utilisation.


The EMBO Journal | 1989

The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical.

Claire Halpin; Elderfield Pd; James He; Zimmermann R; Dunbar B; Colin Robinson

Proteins which are transported across the bacterial plasma membrane, endoplasmic reticulum and thylakoid membrane are usually synthesized as larger precursors containing amino‐terminal targeting signals. Removal of the signals is carried out by specific, membrane‐bound processing peptidases. In this report we show that the reaction specificities of these three peptidases are essentially identical. Precursors of two higher plant thylakoid lumen proteins are efficiently processed by purified Escherichia coli leader peptidase. Processing of one precursor, that of the 23 kd photosystem II protein, by both the thylakoidal and E. coli enzymes generates the correct mature amino terminus. Similarly, leader (signal) peptides of both eukaryotic and prokaryotic origin are cleaved by partially purified thylakoidal processing peptidase. No evidence of incorrect processing was obtained. Both leader peptidase and thylakoidal peptidase are inhibited by a synthetic leader peptide.


Transgenic Research | 2002

Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase

Ann O'connell; Karen Holt; Joël Piquemal; Jacqueline Grima-Pettenati; Alain M. Boudet; Brigitte Pollet; Catherine Lapierre; Michel Petit-Conil; Wolfgang Schuch; Claire Halpin

Transgenic plants severely suppressed in the activity of cinnamoyl-CoA reductase were produced by introduction of a partial sense CCR transgene into tobacco. Five transgenic lines with CCR activities ranging from 2 to 48% of wild-type values were selected for further study. Some lines showed a range of aberrant phenotypes including reduced growth, and all had changes to lignin structure making the polymer more susceptible to alkali extraction. The most severely CCR-suppressed line also had significantly decreased lignin content and an increased proportion of free phenolic groups in non-condensed lignin. These changes are likely to make the lignin easier to extract during chemical pulping. Direct Kraft pulping trials confirmed this. More lignin could be removed from the transgenic wood than from wild-type wood at the same alkali charge. A similar improvement in pulping efficiency was recently shown for poplar trees expressing an antisense cinnamyl alcohol dehydrogenase gene. Pulping experiments performed here on CAD-antisense tobacco plants produced near-identical results – the modified lignin was more easily removed during pulping without any adverse effects on the quality of the pulp or paper produced. These results suggest that pulping experiments performed in tobacco can be predictive of the results that will be obtained in trees such as poplar, extending the utility of the tobacco model. On the basis of our results on CCR manipulation in tobacco, we predict that CCR-suppressed trees may show pulping benefits. However, it is likely that CCR-suppression will not be the optimal target for genetic manipulation of pulping character due to the potential associated growth defects.


Plant Physiology | 2002

Simultaneous Suppression of Multiple Genes by Single Transgenes. Down-Regulation of Three Unrelated Lignin Biosynthetic Genes in Tobacco

James Abbott; Abdellah Barakate; Gaëlle Pinçon; Michel Legrand; Catherine Lapierre; Isabelle Mila; Wolfgang Schuch; Claire Halpin

Many reports now describe the manipulation of plant metabolism by suppressing the expression of single genes. The potential of such work could be greatly expanded if multiple genes could be coordinately suppressed. In the work presented here, we test a novel method for achieving this by using single chimeric constructs incorporating partial sense sequences for multiple genes to target suppression of two or three lignin biosynthetic enzymes. We compare this method with a more conventional approach to achieving the same end by crossing plants harboring different antisense transgenes. Our results indicate that crossing antisense plants is less straightforward and predictable in outcome than anticipated. Most progeny had higher levels of target enzyme activity than predicted and had lost the expected modifications to lignin structure. In comparison, plants transformed with the chimeric partial sense constructs had more consistent high level suppression of target enzymes and had significant changes to lignin content, structure, and composition. It was possible to suppress three target genes coordinately using a single chimeric construct. Our results indicate that chimeric silencing constructs offer great potential for the rapid and coordinate suppression of multiple genes on diverse biochemical pathways and that the technique therefore deserves to be adopted by other researchers.


Plant Molecular Biology | 1992

Identification and characterisation of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco.

Mary E. Knight; Claire Halpin; Wolfgang Schuch

Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) is an enzyme involved in lignin biosynthesis. We have previously isolated pure CAD enzyme as two closely related polypeptides of 44 and 42.5 kDa from tobacco stems. In this paper, we report partial amino acid sequences of these two polypeptides. Based on the peptide sequences mixed oligonucleotides were used to screen a tobacco stem cDNA library and CAD cDNA clones encoding the two polypeptides were identified. DNA sequence comparisons indicate very high sequence identity between these clones both in the coding and in the 5′ and 3′ untranslated sequences. The close similarity between the two CAD genes leads us to suggest that they do not represent different isoforms but are the same gene from each of the two parental lines of Nicotiana tabacum cv. Samsun. Sequence comparisons with alcohol dehydrogenase 1 (ADH1) from yeast shows sequence similarities of ca. 30%, while comparisons with maize, barley and potato ADH1 sequences show similarities of not more than 23%.


The Plant Cell | 2012

Spatiotemporal Asymmetry of the Meiotic Program Underlies the Predominantly Distal Distribution of Meiotic Crossovers in Barley

James D. Higgins; Ruth M. Perry; Abdellah Barakate; Luke Ramsay; Robbie Waugh; Claire Halpin; Susan J. Armstrong; F. Chris H. Franklin

This work characterizes factors involved in the predominantly distal location of meiotic crossovers in barley. Recombination initiates first in the distal regions and later in the interstitial regions; manipulating meiotic progression with higher temperatures produced more interstitial crossovers that could improve mapping of agronomical traits and reduce linkage drag. Meiosis involves reciprocal exchange of genetic information between homologous chromosomes to generate new allelic combinations. In cereals, the distribution of genetic crossovers, cytologically visible as chiasmata, is skewed toward the distal regions of the chromosomes. However, many genes are known to lie within interstitial/proximal regions of low recombination, creating a limitation for breeders. We investigated the factors underlying the pattern of chiasma formation in barley (Hordeum vulgare) and show that chiasma distribution reflects polarization in the spatiotemporal initiation of recombination, chromosome pairing, and synapsis. Consequently, meiotic progression in distal chromosomal regions occurs in coordination with the chromatin cycles that are a conserved feature of the meiotic program. Recombination initiation in interstitial and proximal regions occurs later than distal events, is not coordinated with the cycles, and rarely progresses to form chiasmata. Early recombination initiation is spatially associated with early replicating, euchromatic DNA, which is predominately found in distal regions. We demonstrate that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles. The polarization of the meiotic processes is reduced and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals.

Collaboration


Dive into the Claire Halpin's collaboration.

Top Co-Authors

Avatar

David W. Hopkins

Royal Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin D. Ryan

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Schuch

Imperial Chemical Industries

View shared research outputs
Top Co-Authors

Avatar

John Ralph

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge