Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire L. Simpson is active.

Publication


Featured researches published by Claire L. Simpson.


Human Molecular Genetics | 2009

Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration

Claire L. Simpson; Robin Lemmens; Katarzyna Miskiewicz; Wendy J. Broom; Valerie K. Hansen; Paul W.J. van Vught; John Landers; Peter Sapp; Ludo Van Den Bosch; Joanne Knight; Benjamin M. Neale; Martin Turner; Jan H. Veldink; Roel A. Ophoff; Vineeta Tripathi; Ana Beleza; Meera N. Shah; Petroula Proitsi; Annelies Van Hoecke; Peter Carmeliet; H. Robert Horvitz; P. Nigel Leigh; Christopher Shaw; Leonard H. van den Berg; Pak Sham; John Powell; Patrik Verstreken; Robert H. Brown; Wim Robberecht; Ammar Al-Chalabi

Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both candidate gene and genome-wide studies, but the genetic causes remain largely unknown. We have performed two independent parallel studies, both implicating the RNA polymerase II component, ELP3, in axonal biology and neuronal degeneration. In the first, an association study of 1884 microsatellite markers, allelic variants of ELP3 were associated with ALS in three human populations comprising 1483 people (P = 1.96 × 10−9). In the second, an independent mutagenesis screen in Drosophila for genes important in neuronal communication and survival identified two different loss of function mutations, both in ELP3 (R475K and R456K). Furthermore, knock down of ELP3 protein levels using antisense morpholinos in zebrafish embryos resulted in dose-dependent motor axonal abnormalities [Pearson correlation: −0.49, P = 1.83 × 10−12 (start codon morpholino) and −0.46, P = 4.05 × 10−9 (splice-site morpholino), and in humans, risk-associated ELP3 genotypes correlated with reduced brain ELP3 expression (P = 0.01). These findings add to the growing body of evidence implicating the RNA processing pathway in neurodegeneration and suggest a critical role for ELP3 in neuron biology and of ELP3 variants in ALS.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis.

John Landers; Judith Melki; Vincent Meininger; Jonathan D. Glass; Leonard H. van den Berg; Michael A. van Es; Peter Sapp; Paul W.J. van Vught; Diane McKenna-Yasek; Hylke M. Blauw; Ting Jan Cho; Meraida Polak; Lijia Shi; Anne Marie Wills; Wendy J. Broom; Nicola Ticozzi; Vincenzo Silani; Aslihan Ozoguz; Ildefonso Rodriguez-Leyva; Jan H. Veldink; Adrian J. Ivinson; Christiaan G.J. Saris; Betsy A. Hosler; Alayna Barnes-Nessa; Nicole R. Couture; John H. J. Wokke; Thomas J. Kwiatkowski; Roel A. Ophoff; Simon Cronin; Orla Hardiman

Amyotrophic lateral sclerosis is a degenerative disorder of motor neurons that typically develops in the 6th decade and is uniformly fatal, usually within 5 years. To identify genetic variants associated with susceptibility and phenotypes in sporadic ALS, we performed a genome-wide SNP analysis in sporadic ALS cases and controls. A total of 288,357 SNPs were screened in a set of 1,821 sporadic ALS cases and 2,258 controls from the U.S. and Europe. Survival analysis was performed using 1,014 deceased sporadic cases. Top results for susceptibility were further screened in an independent sample set of 538 ALS cases and 556 controls. SNP rs1541160 within the KIFAP3 gene (encoding a kinesin-associated protein) yielded a genome-wide significant result (P = 1.84 × 10−8) that withstood Bonferroni correction for association with survival. Homozygosity for the favorable allele (CC) conferred a 14.0 months survival advantage. Sequence, genotypic and functional analyses revealed that there is linkage disequilibrium between rs1541160 and SNP rs522444 within the KIFAP3 promoter and that the favorable alleles of rs1541160 and rs522444 correlate with reduced KIFAP3 expression. No SNPs were associated with risk of sporadic ALS, site of onset, or age of onset. We have identified a variant within the KIFAP3 gene that is associated with decreased KIFAP3 expression and increased survival in sporadic ALS. These findings support the view that genetic factors modify phenotypes in this disease and that cellular motor proteins are determinants of motor neuron viability.


Nature Genetics | 2014

Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

Pirro G. Hysi; Ching-Yu Cheng; Henriet Springelkamp; Stuart MacGregor; Jessica N. Cooke Bailey; Robert Wojciechowski; Veronique Vitart; Abhishek Nag; Alex W. Hewitt; René Höhn; Cristina Venturini; Alireza Mirshahi; Wishal D. Ramdas; Gudmar Thorleifsson; Eranga N. Vithana; Chiea Chuen Khor; Arni B Stefansson; Jiemin Liao; Jonathan L. Haines; Najaf Amin; Ya Xing Wang; Philipp S. Wild; Ayse B Ozel; Jun Li; Brian W. Fleck; Tanja Zeller; Sandra E Staffieri; Yik-Ying Teo; Gabriel Cuellar-Partida; Xiaoyan Luo

Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multi-ancestry participants for IOP. We confirm genetic association of known loci for IOP and primary open-angle glaucoma (POAG) and identify four new IOP-associated loci located on chromosome 3q25.31 within the FNDC3B gene (P = 4.19 × 10−8 for rs6445055), two on chromosome 9 (P = 2.80 × 10−11 for rs2472493 near ABCA1 and P = 6.39 × 10−11 for rs8176693 within ABO) and one on chromosome 11p11.2 (best P = 1.04 × 10−11 for rs747782). Separate meta-analyses of 4 independent POAG cohorts, totaling 4,284 cases and 95,560 controls, showed that 3 of these loci for IOP were also associated with POAG.


PLOS ONE | 2014

Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci

Claire L. Simpson; Robert Wojciechowski; Konrad Oexle; Federico Murgia; Laura Portas; Xiaohui Li; Virginie J. M. Verhoeven; Veronique Vitart; Maria Schache; S. Mohsen Hosseini; Pirro G. Hysi; Leslie J. Raffel; Mary Frances Cotch; Emily Y. Chew; Barbara E. K. Klein; Ronald Klein; Tien Yin Wong; Cornelia M. van Duijn; Paul Mitchell; Seang-Mei Saw; Maurizio Fossarello; Jie Jin Wang; Dcct; Ozren Polasek; Harry Campbell; Igor Rudan; Ben A. Oostra; André G. Uitterlinden; Albert Hofman; Fernando Rivadeneira

Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.


Nucleic Acids Research | 2005

A central resource for accurate allele frequency estimation from pooled DNA genotyped on DNA microarrays

Claire L. Simpson; Joanne Knight; Lee M. Butcher; Valerie K. Hansen; Emma L. Meaburn; Leonard C. Schalkwyk; Ian Craig; John Powell; Pak Sham; Ammar Al-Chalabi

Analysing pooled DNA on microarrays is an efficient way to genotype hundreds of individuals for thousands of markers for genome-wide association. Although direct comparison of case and control fluorescence scores is possible, correction for differential hybridization of alleles is important, particularly for rare single nucleotide polymorphisms. Such correction relies on heterozygous fluorescence scores and requires the genotyping of hundreds of individuals to obtain sufficient estimates of the correction factor, completely negating any benefit gained by pooling samples. We explore the effect of differential hybridization on test statistics and provide a solution to this problem in the form of a central resource for the accumulation of heterozygous fluorescence scores, allowing accurate allele frequency estimation at no extra cost.


American Journal of Human Genetics | 2015

A Recurrent Mutation in PARK2 Is Associated with Familial Lung Cancer

Dong Hai Xiong; Yian Wang; Elena Kupert; Claire L. Simpson; Susan M. Pinney; Colette Gaba; Diptasri Mandal; Ann G. Schwartz; Ping Yang; Mariza de Andrade; Claudio W. Pikielny; Jinyoung Byun; Yafang Li; Dwight Stambolian; Margaret R. Spitz; Yanhong Liu; Christopher I. Amos; Joan E. Bailey-Wilson; Marshall W. Anderson; Ming You

PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation.


American Journal of Medical Genetics | 2001

Exclusion of linkage to the CDL1 gene region on chromosome 3q26.3 in some familial cases of Cornelia de Lange Syndrome

Ian D. Krantz; Emma Tonkin; Melanie Smith; Marcella Devoto; Armand Bottani; Claire L. Simpson; Mary Hofreiter; Vinod Abraham; Lori Jukofsky; Brian P. Conti; Tom Strachan; Laird G. Jackson

Cornelia de Lange Syndrome (CdLS) is a complex developmental disorder consisting of characteristic facial features, limb abnormalities, hirsutism, ophthalmologic involvement, gastroesophageal dysfunction, hearing loss, as well as growth and neurodevelopmental retardation. Most cases of CdLS appear to be sporadic. Familial cases are rare and indicate autosomal dominant inheritance. Several individuals with CdLS have been reported with chromosomal abnormalities, suggesting candidate genomic regions within which the causative gene(s) may lie. A CdLS gene location (CDL1) has been assigned to 3q26.3 based on phenotypic overlap with the duplication 3q syndrome (critical region 3q26.2-q27) and the report of a CdLS individual with a balanced de novo t(3;17)(q26.3;q23.1). It has been postulated that a gene within the dup3q critical region results in the CdLS when deleted or mutated. We have performed a linkage analysis to the minimal critical region for the dup3q syndrome (that encompasses the translocation breakpoint) on chromosome 3q in 10 rare familial cases of CdLS. Nineteen markers spanning a region of approximately 40 Mb (37 cM) were used. Results of a multipoint linkage analysis demonstrated total lod-scores that were negative across the chromosome 3q26-q27 region. In 4/10 families, lod-scores were less than -2 in the 2 cM region encompassing the translocation, while in the remaining 6/10 families, lod-scores could not exclude linkage to this region. These studies indicate that in some multicase families, the disease gene does not map to the CDL1 region at 3q26.3.


Clinical Genetics | 2015

Determination of the allelic frequency in Smith–Lemli–Opitz syndrome by analysis of massively parallel sequencing data sets

Joanna L. Cross; James R. Iben; Claire L. Simpson; Audrey Thurm; Susan E. Swedo; Elaine Tierney; Joan E. Bailey-Wilson; Leslie G. Biesecker; Forbes D. Porter; Christopher A. Wassif

Data from massively parallel sequencing or ‘Next Generation Sequencing’ of the human exome has reached a critical mass in both public and private databases, in that these collections now allow researchers to critically evaluate population genetics in a manner that was not feasible a decade ago. The ability to determine pathogenic allele frequencies by evaluation of the full coding sequences and not merely a single nucleotide polymorphism (SNP) or series of SNPs will lead to more accurate estimations of incidence. For demonstrative purposes, we analyzed the causative gene for the disorder Smith–Lemli–Opitz Syndrome (SLOS), the 7‐dehydrocholesterol reductase (DHCR7) gene and determined both the carrier frequency for DHCR7 mutations, and predicted an expected incidence of the disorder. Estimations of the incidence of SLOS have ranged widely from 1:10,000 to 1:70,000 while the carrier frequency has been reported as high as 1 in 30. Using four exome data sets with a total of 17,836 chromosomes, we ascertained a carrier frequency of pathogenic DHRC7 mutations of 1.01%, and predict a SLOS disease incidence of 1/39,215 conceptions. This approach highlights yet another valuable aspect of the exome sequencing databases, to inform clinical and health policy decisions related to genetic counseling, prenatal testing and newborn screening.


International Journal of Cancer | 2011

Genome-Wide Linkage Scan for Prostate Cancer Susceptibility in Finland: Evidence for a Novel Locus on 2q37.3 and confirmation of signal on 17q21-q22

Cheryl D. Cropp; Claire L. Simpson; Tiina Wahlfors; Nati Ha; Asha George; MaryPat Jones; Ursula Harper; Damaris Ponciano-Jackson; Tiffany A. Green; Teuvo L.J. Tammela; Joan E. Bailey-Wilson; Johanna Schleutker

Genome‐wide linkage studies have been used to localize rare and highly penetrant prostate cancer (PRCA) susceptibility genes. Linkage studies performed in different ethnic backgrounds and populations have been somewhat disparate, resulting in multiple, often irreproducible signals because of genetic heterogeneity and high sporadic background of the disease. Our first genome‐wide linkage study and subsequent fine‐mapping study of Finnish hereditary prostate cancer (HPC) families gave evidence of linkage to one region. Here, we conducted subsequent scans with microsatellites and SNPs in a total of 69 Finnish HPC families. GENEHUNTER‐PLUS was used for parametric and nonparametric analyses. Our microsatellite genome‐wide linkage study provided evidence of linkage to 17q12‐q23, with a heterogeneity LOD (HLOD) score of 3.14 in a total of 54 of the 69 families. Genome‐wide SNP analysis of 59 of the 69 families gave a highest HLOD score of 3.40 at 2q37.3 under a dominant high penetrance model. Analyzing all 69 families by combining microsatellite and SNP maps also yielded HLOD scores of > 3.3 in two regions (2q37.3 and 17q12‐q21.3). These significant linkage peaks on chromosome 2 and 17 confirm previous linkage evidence of a locus on 17q from other populations and provide a basis for continued research into genetic factors involved in PRCA. Fine‐mapping analysis of these regions is ongoing and candidate genes at linked loci are currently under analysis.


Ophthalmology | 2013

Matrix metalloproteinases and educational attainment in refractive error: evidence of gene-environment interactions in the Age-Related Eye Disease Study.

Robert Wojciechowski; Stephanie S. Yee; Claire L. Simpson; Joan E. Bailey-Wilson; Dwight Stambolian

PURPOSE A previous study of Old Order Amish families showed an association of ocular refraction with markers proximal to matrix metalloproteinase (MMP) genes MMP1 and MMP10 and intragenic to MMP2. A candidate gene replication study of association between refraction and single nucleotide polymorphisms (SNPs) within these genomic regions was conducted. DESIGN Candidate gene genetic association study. PARTICIPANTS Two thousand participants drawn from the Age-Related Eye Disease Study (AREDS) were chosen for genotyping. After quality-control filtering, 1912 individuals were available for analysis. METHODS Microarray genotyping was performed using the HumanOmni 2.5 bead array (Illumina, Inc., San Diego, CA). Single nucleotide polymorphisms originally typed in the previous Amish association study were extracted for analysis. In addition, haplotype tagging SNPs were genotyped using TaqMan assays. Quantitative trait association analyses of mean spherical equivalent refraction were performed on 30 markers using linear regression models and an additive genetic risk model while adjusting for age, sex, education, and population substructure. Post hoc analyses were performed after stratifying on a dichotomous education variable. Pointwise (P(emp)) and multiple-test study-wise (P(multi)) significance levels were calculated empirically through permutation. MAIN OUTCOME MEASURES Mean spherical equivalent refraction was used as a quantitative measure of ocular refraction. RESULTS The mean age and ocular refraction were 68 years (standard deviation [SD], 4.7 years) and +0.55 diopters (D; SD, 2.14 D), respectively. Pointwise statistical significance was obtained for rs1939008 (P(emp) = 0.0326). No SNP attained statistical significance after correcting for multiple testing. In stratified analyses, multiple SNPs reached pointwise significance in the lower-education group: 2 of these were statistically significant after multiple testing correction. The 2 highest-ranking SNPs in Amish families (rs1939008 and rs9928731) showed pointwise P(emp)<0.01 in the lower-education stratum of AREDS participants. CONCLUSIONS This study showed suggestive evidence of replication of an association signal for ocular refraction to a marker between MMP1 and MMP10. Evidence of a gene-environment interaction between previously reported markers and education on refractive error also was shown. Variants in MMP1 through MMP10 and MMP2 regions seem to affect population variation in ocular refraction in environmental conditions less favorable for myopia development.

Collaboration


Dive into the Claire L. Simpson's collaboration.

Top Co-Authors

Avatar

Joan E. Bailey-Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dwight Stambolian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony M. Musolf

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Kupert

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Marshall W. Anderson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ming You

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Susan M. Pinney

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge