Elena Kupert
University of Cincinnati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Kupert.
American Journal of Human Genetics | 2004
Joan E. Bailey-Wilson; Christopher I. Amos; Susan M. Pinney; Gloria M. Petersen; M. De Andrade; Jonathan S. Wiest; Pam R. Fain; Ann G. Schwartz; Ming You; Wilbur A. Franklin; C. Klein; Adi F. Gazdar; Henry Rothschild; Diptasri Mandal; Teresa Coons; Joshua P. Slusser; Juwon Lee; Colette Gaba; Elena Kupert; A. Perez; X. Zhou; D. Zeng; Qing Liu; Q. Zhang; Daniela Seminara; John D. Minna; Marshall W. Anderson
Lung cancer is a major cause of death in the United States and other countries. The risk of lung cancer is greatly increased by cigarette smoking and by certain occupational exposures, but familial factors also clearly play a major role. To identify susceptibility genes for familial lung cancer, we conducted a genomewide linkage analysis of 52 extended pedigrees ascertained through probands with lung cancer who had several first-degree relatives with the same disease. Multipoint linkage analysis, under a simple autosomal dominant model, of all 52 families with three or more individuals affected by lung, throat, or laryngeal cancer, yielded a maximum heterogeneity LOD score (HLOD) of 2.79 at 155 cM on chromosome 6q (marker D6S2436). A subset of 38 pedigrees with four or more affected individuals yielded a multipoint HLOD of 3.47 at 155 cM. Analysis of a further subset of 23 multigenerational pedigrees with five or more affected individuals yielded a multipoint HLOD score of 4.26 at the same position. The 14 families with only three affected relatives yielded negative LOD scores in this region. A predivided samples test for heterogeneity comparing the LOD scores from the 23 multigenerational families with those from the remaining families was significant (P=.007). The 1-HLOD multipoint support interval from the multigenerational families extends from C6S1848 at 146 cM to 164 cM near D6S1035, overlapping a genomic region that is deleted in sporadic lung cancers as well as numerous other cancer types. Parametric linkage and variance-components analysis that incorporated effects of age and personal smoking also supported linkage in this region, but with somewhat diminished support. These results localize a major susceptibility locus influencing lung cancer risk to 6q23-25.
Journal of the National Cancer Institute | 2008
Pengyuan Liu; Haris G. Vikis; Daolong Wang; Yan Lu; Yian Wang; Ann G. Schwartz; Susan M. Pinney; Ping Yang; Mariza de Andrade; Gloria M. Petersen; Jonathan S. Wiest; Pamela R. Fain; Adi F. Gazdar; Colette Gaba; Henry Rothschild; Diptasri Mandal; Teresa Coons; Juwon Lee; Elena Kupert; Daniela Seminara; John D. Minna; Joan E. Bailey-Wilson; Xifeng Wu; Margaret R. Spitz; T. Eisen; Richard S. Houlston; Christopher I. Amos; Marshall W. Anderson; Ming You
Three recent genome-wide association studies identified associations between markers in the chromosomal region 15q24-25.1 and the risk of lung cancer. We conducted a genome-wide association analysis to investigate associations between single-nucleotide polymorphisms (SNPs) and the risk of lung cancer, in which we used blood DNA from 194 case patients with familial lung cancer and 219 cancer-free control subjects. We identified associations between common sequence variants at 15q24-25.1 (that spanned LOC123688 [a hypothetical gene], PSMA4, CHRNA3, CHRNA5, and CHRNB4) and lung cancer. The risk of lung cancer was more than fivefold higher among those subjects who had both a family history of lung cancer and two copies of high-risk alleles rs8034191 (odds ratio [OR] = 7.20, 95% confidence interval [CI] = 2.21 to 23.37) or rs1051730 (OR = 5.67, CI = 2.21 to 14.60, both of which were located in the 15q24-25.1 locus, than among control subjects. Thus, further research to elucidate causal variants in the 15q24-25.1 locus that are associated with lung cancer is warranted.
Cancer Research | 2007
Haris G. Vikis; Mitsuo Sato; Michael A. James; Daolong Wang; Yian Wang; Min Wang; Dongmei Jia; Yan Liu; Joan E. Bailey-Wilson; Christopher I. Amos; Susan M. Pinney; Gloria M. Petersen; Mariza de Andrade; Ping Yang; Jonathan S. Wiest; Pamela R. Fain; Ann G. Schwartz; Adi F. Gazdar; Colette Gaba; Henry Rothschild; Diptasri Mandal; Elena Kupert; Daniela Seminara; Avinash Viswanathan; Ramaswamy Govindan; John D. Minna; Marshall W. Anderson; Ming You
The use of tyrosine kinase inhibitors (TKI) has yielded great success in treatment of lung adenocarcinomas. However, patients who develop resistance to TKI treatment often acquire a somatic resistance mutation (T790M) located in the catalytic cleft of the epidermal growth factor receptor (EGFR) enzyme. Recently, a report describing EGFR-T790M as a germ-line mutation suggested that this mutation may be associated with inherited susceptibility to lung cancer. Contrary to previous reports, our analysis indicates that the T790M mutation confers increased Y992 and Y1068 phosphorylation levels. In a human bronchial epithelial cell line, overexpression of EGFR-T790M displayed a growth advantage over wild-type (WT) EGFR. We also screened 237 lung cancer family probands, in addition to 45 bronchoalveolar tumors, and found that none of them contained the EGFR-T790M mutation. Our observations show that EGFR-T790M provides a proliferative advantage with respect to WT EGFR and suggest that the enhanced kinase activity of this mutant is the basis for rare cases of inherited susceptibility to lung cancer.
Clinical Cancer Research | 2009
Ming You; Daolong Wang; Pengyuan Liu; Haris G. Vikis; Michael A. James; Yan Lu; Yian Wang; Min Wang; Qiong Chen; Dongmei Jia; Yan Liu; Weidong Wen; Ping Yang; Zhifu Sun; Susan M. Pinney; Wei Zheng; Xiao-Ou Shu; Jirong Long; Yu-Tang Gao; Yong Bing Xiang; Wong Ho Chow; Nat Rothman; Gloria M. Petersen; Mariza de Andrade; Yanhong Wu; Julie M. Cunningham; Jonathan S. Wiest; Pamela R. Fain; Ann G. Schwartz; Luc Girard
Purpose: We have previously mapped a major susceptibility locus influencing familial lung cancer risk to chromosome 6q23-25. However, the causal gene at this locus remains undetermined. In this study, we further refined this locus to identify a single candidate gene, by fine mapping using microsatellite markers and association studies using high-density single nucleotide polymorphisms (SNP). Experimental Design: Six multigenerational families with five or more affected members were chosen for fine-mapping the 6q linkage region using microsatellite markers. For association mapping, we genotyped 24 6q-linked cases and 72 unrelated noncancer controls from the Genetic Epidemiology of Lung Cancer Consortium resources using the Affymetrix 500K chipset. Significant associations were validated in two independent familial lung cancer populations: 226 familial lung cases and 313 controls from the Genetic Epidemiology of Lung Cancer Consortium, and 154 familial cases and 325 controls from Mayo Clinic. Each familial case was chosen from one high-risk lung cancer family that has three or more affected members. Results: A region-wide scan across 6q23-25 found significant association between lung cancer susceptibility and three single nucleotide polymorphisms in the first intron of the RGS17 gene. This association was further confirmed in two independent familial lung cancer populations. By quantitative real-time PCR analysis of matched tumor and normal human tissues, we found that RGS17 transcript accumulation is highly and consistently increased in sporadic lung cancers. Human lung tumor cell proliferation and tumorigenesis in nude mice are inhibited upon knockdown of RGS17 levels. Conclusion:RGS17 is a major candidate for the familial lung cancer susceptibility locus on chromosome 6q23-25.
Cancer Research | 2010
Christopher I. Amos; Susan M. Pinney; Yafang Li; Elena Kupert; Juwon Lee; Mariza de Andrade; Ping Yang; Ann G. Schwartz; Pam R. Fain; Adi F. Gazdar; John D. Minna; Jonathan S. Wiest; Dong Zeng; Henry Rothschild; Diptasri Mandal; Ming You; Teresa Coons; Colette Gaba; Joan E. Bailey-Wilson; Marshall W. Anderson
Cigarette smoking is the major cause for lung cancer, but genetic factors also affect susceptibility. We studied families that included multiple relatives affected by lung cancer. Results from linkage analysis showed strong evidence that a region of chromosome 6q affects lung cancer risk. To characterize the effects that this region of chromosome 6q region has on lung cancer risk, we identified a haplotype that segregated with lung cancer. We then performed Cox regression analysis to estimate the differential effects that smoking behaviors have on lung cancer risk according to whether each individual carried a risk-associated haplotype or could not be classified and was assigned unknown haplotypic status. We divided smoking exposures into never smokers, light smokers (<20 pack-years), moderate smokers (20 to <40 pack-years), and heavy smokers (>or=40 pack-years). Comparing results according to smoking behavior stratified by carrier status, compared with never smokers, there was weakly increasing risk for increasing smoking behaviors, with the hazards ratios being 3.44, 4.91, and 5.18, respectively, for light, moderate, or heavy smokers, whereas among the individuals from families without the risk haplotype, the risks associated with smoking increased strongly with exposure, the hazards ratios being, respectively, 4.25, 9.17, and 11.89 for light, moderate, and heavy smokers. The never smoking carriers had a 4.71-fold higher risk than the never smoking individuals without known risk haplotypes. These results identify a region of chromosome 6q that increases risk for lung cancer and that confers particularly higher risks to never and light smokers.
Cancer Research | 2009
Yan Liu; Pengyuan Liu; Weidong Wen; Michael A. James; Yian Wang; Joan E. Bailey-Wilson; Christopher I. Amos; Susan M. Pinney; Ping Yang; Mariza de Andrade; Gloria M. Petersen; Jonathan S. Wiest; Pamela R. Fain; Ann G. Schwartz; Adi F. Gazdar; Colette Gaba; Henry Rothschild; Diptasri Mandal; Elena Kupert; Juwon Lee; Daniela Seminara; John D. Minna; Marshall W. Anderson; Ming You
Recent genome-wide association studies have linked the chromosome 15q24-25.1 locus to nicotine addiction and lung cancer susceptibility. To refine the 15q24-25.1 locus, we performed a haplotype-based association analysis of 194 familial lung cases and 219 cancer-free controls from the Genetic Epidemiology of Lung Cancer Consortium (GELCC) collection, and used proliferation and apoptosis analyses to determine which gene(s) in the 15q24-25.1 locus mediates effects on lung cancer cell growth in vitro. We identified two distinct subregions, hapL (P = 3.20 x 10(-6)) and hapN (P = 1.51 x 10(-6)), which were significantly associated with familial lung cancer. hapL encompasses IREB2, LOC123688, and PSMA4, and hapN encompasses the three nicotinic acetylcholine receptor subunit genes CHRNA5, CHRNA3, and CHRNB4. Examination of the genes around hapL revealed that PSMA4 plays a role in promoting cancer cell proliferation. PSMA4 mRNA levels were increased in lung tumors compared with normal lung tissues. Down-regulation of PSMA4 expression decreased proteasome activity and induced apoptosis. Proteasome dysfunction leads to many diseases including cancer, and drugs that inhibit proteasome activity show promise as a form of cancer treatment. Genes around hapN were also investigated, but did not show any direct effect on lung cancer cell proliferation. We concluded that PSMA4 is a strong candidate mediator of lung cancer cell growth, and may directly affect lung cancer susceptibility through its modulation of cell proliferation and apoptosis.
American Journal of Physiology-cell Physiology | 1998
Katarina Stroffekova; Elena Kupert; Danuta H. Malinowska; John Cuppoletti
Rabbit and human ClC-2G Cl- channels are voltage sensitive and activated by protein kinase A and low extracellular pH. The objective of the present study was to investigate the mechanism involved in acid activation of the ClC-2G Cl- channel and to determine which amino acid residues play a role in this acid activation. Channel open probability ( P o) at ±80 mV holding potentials increased fourfold in a concentration-dependent manner with extracellular H+concentration (that is, extracellular pH, pH trans ), with an apparent acidic dissociation constant of pH 4.95 ± 0.27. 1-Ethyl-3(3-dimethylaminopropyl)carbodiimide-catalyzed amidation of the channel with glycine methyl ester increased P o threefold at pH trans 7.4, at which the channel normally exhibits low P o. With extracellular pH reduction (protonation) or amidation, increased P o was due to a significant increase in open time constants and a significant decrease in closed time constants of the channel gating, and this effect was insensitive to applied voltage. With the use of site-directed mutagenesis, the extracellular region EELE (amino acids 416-419) was identified as the pH sensor and amino acid Glu-419 was found to play the key or predominant role in activation of the ClC-2G Cl- channel by extracellular acid.
Cancer Epidemiology, Biomarkers & Prevention | 2010
Pengyuan Liu; Haris G. Vikis; Yan Lu; Yian Wang; Ann G. Schwartz; Susan M. Pinney; Ping Yang; Mariza de Andrade; Adi F. Gazdar; Colette Gaba; Diptasri Mandal; Juwon Lee; Elena Kupert; Daniela Seminara; John D. Minna; Joan E. Bailey-Wilson; Christopher I. Amos; Marshall W. Anderson; Ming You
Background: Genetic factors play important roles in lung cancer susceptibility. In this study, we replicated the association of 5p15.33 and 6p21.33 with familial lung cancer. Taking into account the previously identified genetic susceptibility variants on 6q23-25/RGS17 and 15q24-25.1, we further determined the cumulative association of these four genetic regions and the population attributable risk percent of familial lung cancer they account for. Methods: One hundred ninety-four case patients and 219 cancer-free control subjects from the Genetic Epidemiology of Lung Cancer Consortium were used for the association analysis. Each familial case was chosen from one high-risk lung cancer family that has three or more affected members. Single nucleotide polymorphisms (SNP) on chromosomal regions 5p15.33, 6p21.33, 6q23-25/RGS17, and 15q24-25.1 were assessed for their associations with familial lung cancer. The cumulative association of the four chromosomal regions with familial lung cancer was evaluated with the use of a linear logistic model. Population attributable risk percent was calculated for each SNP using risk ratio. Results: SNP rs31489 showed the strongest evidence of familial lung cancer association on 5p15.33 (P = 2 × 10−4; odds ratio, 0.57; 95% confidence interval, 0.42-0.77), whereas rs3117582 showed a weak association on 6p21.33 (P = 0.09; odds ratio, 1.47; 95% confidence interval, 0.94-2.31). Analysis of a combination of SNPs from the four regions provided a stronger cumulative association with familial lung cancer (P = 6.70 × 10−6) than any individual SNPs. The risk of lung cancer was increased to 3- to 11-fold among those subjects who had at least one copy of risk allele at each region compared with subjects without any of the risk factors. These four genetic regions contribute to a total of 34.6% of familial lung cancer in smokers. Conclusions: The SNPs in four chromosomal regions have a cumulative and significant association with familial lung cancer and account for about one-third of the population attributable risk for familial lung cancer. Cancer Epidemiol Biomarkers Prev; 19(2); 517–24
American Journal of Human Genetics | 2015
Dong Hai Xiong; Yian Wang; Elena Kupert; Claire L. Simpson; Susan M. Pinney; Colette Gaba; Diptasri Mandal; Ann G. Schwartz; Ping Yang; Mariza de Andrade; Claudio W. Pikielny; Jinyoung Byun; Yafang Li; Dwight Stambolian; Margaret R. Spitz; Yanhong Liu; Christopher I. Amos; Joan E. Bailey-Wilson; Marshall W. Anderson; Ming You
PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation.
BMC Cancer | 2011
Elena Kupert; Marshall W. Anderson; Yin Liu; Paul Succop; Linda Levin; Jiang Wang; Kathryn A. Wikenheiser-Brokamp; Pingping Chen; Susan M. Pinney; Trudy Macdonald; Zhongyun Dong; Sandra L. Starnes; Shan Lu
BackgroundFive-year survival for lung cancer has remained at 16% over last several decades largely due to the fact that over 50% of patients are diagnosed with locally-advanced or metastatic disease. Diagnosis at an earlier and potentially curable stage is crucial. Solitary pulmonary nodules (SPNs) are common, but the difficulty lies in the determination of which SPN is malignant. Currently, there is no convenient and reliable biomarker effective for early diagnosis. Secretory phospholipase A2-IIa (sPLA2-IIa) is secreted into the circulation by cancer cells and may allow for an early detection of lung cancer.MethodsPlasma samples from healthy donors, patients with only benign SPN, and patients with lung cancer were analyzed. Expression of sPLA2-IIa protein in lung cancer tissues was also determined.ResultsWe found that the levels of plasma sPLA2-IIa were significantly elevated in lung cancer patients. The receiver operating characteristic curve analysis, comparing lung cancer patients to patients with benign nodules, revealed an optimum cutoff value for plasma sPLA2-IIa of 2.4 ng/ml to predict an early stage cancer with 48% sensitivity and 86% specificity and up to 67% sensitivity for T2 stage lung cancer. Combined sPLA2-IIa, CEA, and Cyfra21.1 tests increased the sensitivity for lung cancer prediction. High level of plasma sPLA2-IIa was associated with a decreased overall cancer survival. sPLA2-IIa was overexpressed in almost all non-small cell lung cancer and in the majority of small cell lung cancer by immunohistochemistry analysis.ConclusionOur finding strongly suggests that plasma sPLA2-IIa is a potential lung biomarker to distinguish benign nodules from lung cancer and to aid lung cancer diagnosis in patients with SPNs.