Claire Le Marrec
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Le Marrec.
Applied and Environmental Microbiology | 2000
Claire Le Marrec; Bertrand Hyronimus; Philippe Bressollier; Bernard Verneuil; Maria C. Urdaci
ABSTRACT A plasmid-linked antimicrobial peptide, named coagulin, produced byBacillus coagulans I4 has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42–50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I4. Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilacticistrains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI4 DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 fromP. acidilactici and pI4 when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus.
Applied and Environmental Microbiology | 2008
Marguerite Dols-Lafargue; Hyo Young Lee; Claire Le Marrec; Alain Heyraud; Gérard Chambat; Aline Lonvaud-Funel
ABSTRACT “Ropiness” is a bacterial alteration in wines, beers, and ciders, caused by β-glucan-synthesizing pediococci. A single glucosyltransferase, Gtf, controls ropy polysaccharide synthesis. In this study, we show that the corresponding gtf gene is also present on the chromosomes of several strains of Oenococcus oeni isolated from nonropy wines. gtf is surrounded by mobile elements that may be implicated in its integration into the chromosome of O. oeni. gtf is expressed in all the gtf+ strains, and β-glucan is detected in the majority of these strains. Part of this β-glucan accumulates around the cells forming a capsule, while the other part is liberated into the medium together with heteropolysaccharides. Most of the time, this polymer excretion does not lead to ropiness in a model medium. In addition, we show that wild or recombinant bacterial strains harboring a functional gtf gene (gtf+) are more resistant to several stresses occurring in wine (alcohol, pH, and SO2) and exhibit increased adhesion capacities compared to their gtf mutant variants.
Applied and Environmental Microbiology | 2000
Hervé Robert; Claire Le Marrec; Carlos Blanco; Mohamed Jebbar
ABSTRACT Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl,T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila.
Applied and Environmental Microbiology | 2009
Elisabeth Bon; Arnaud Delaherche; Eric Bilhere; Antoine De Daruvar; Aline Lonvaud-Funel; Claire Le Marrec
ABSTRACT Oenococcus oeni strains are well-known for their considerable phenotypic variations in terms of tolerance to harsh wine conditions and malolactic activity. Genomic subtractive hybridization (SH) between two isolates with differing enological potentials was used to elucidate the genetic bases of this intraspecies diversity and identify novel genes involved in adaptation to wine. SH revealed 182 tester-specific fragments corresponding to 126 open reading frames (ORFs). A large proportion of the chromosome-related ORFs resembled genes involved in carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, and replication, recombination, and repair. Six regions of genomic plasticity were identified, and their analysis suggested that both limited recombination and insertion/deletion events contributed to the vast genomic diversity observed in O. oeni. The association of selected sequences with adaptation to wine was further assessed by screening a large collection of strains using PCR. No sequences were found to be specific to highly performing (HP) strains alone. However, there was a statistically significant positive association between HP strains and the presence of eight gene sequences located on regions 2, 4, and 5. Gene expression patterns were significantly modified in HP strains, following exposure to one or more of the common stresses in wines. Regions 2 and 5 showed no traces of mobile elements and had normal GC content. In contrast, region 4 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhances the fitness of O. oeni strains.
Applied and Environmental Microbiology | 2006
Fabien Dumetz; Eric Duchaud; Scott E. LaPatra; Claire Le Marrec; Stéphane Claverol; Maria-C. Urdaci; Michel Le Hénaff
ABSTRACT Investigations of the surface characteristics of Flavobacterium psychrophilum, an important pathogen of fish, assisted us in identifying a surface protein termed P18. In the current study, we developed a simple and efficient procedure for the purification of this protein by a two-step method. First, P18 was selectively released from flavobacteria by a heat-HEPES treatment of the cells and then subjected to anion-exchange high-performance liquid chromatography. De novo sequencing was used to generate a fragmented peptide spectrum from purified P18. Comparison of two obtained peptide sequences with a partial genome sequence of F. psychrophilum (INRA, Jouy-en-Josas, France) identified one gene encoding a 166-amino-acid OmpH-like protein that mostly likely undergoes N-terminal cleavage of the 23-residue signal peptide. The susceptibility of the OmpH-like protein to proteinase K treatment and the bacteriostatic/bactericidal activities of anti-OmpH-like protein antibodies indicated that this protein is actually exposed on the surface of F. psychrophilum. Vaccination trials showed that the OmpH-like protein can induce a high titer of anti-OmpH-like protein antibodies which are protective. Taken together, these results suggest that this surface protein produced by F. psychrophilum could be used in future vaccine development as a promising candidate antigen.
International Journal of Food Microbiology | 2003
Aurélie Baliarda; Hervé Robert; Mohamed Jebbar; Carlos Blanco; Alain Deschamps; Claire Le Marrec
The physiological responses of the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila (formely known as P. halophila), subjected to osmotic stress in the presence of molecules known to act as osmoprotectants for other bacteria were studied. In a defined medium, glycine betaine, dimethylsulfonioacetate, choline, proline and L-carnitine were able to relieve inhibition of growth at 0.8 M NaCl. The five compounds were shown to efficiently compete with glycine betaine transport, suggesting the existence of common transporter(s) for these molecules. T. halophila, the most tolerant strain, exhibited a larger spectrum of compatible solutes including dimethylsulfonioacetate, dimethylsulfoniopropionate and ectoine. Preliminary data suggest that restoration of growth by ectoine under osmotic constraint seems specific to the genus Tetragenococcus.
Journal of Agricultural and Food Chemistry | 2007
Marguerite Dols-Lafargue; Emmanuel Gindreau; Claire Le Marrec; Gérard Chambat; Alain Heyraud; Aline Lonvaud-Funel
The polysaccharide content of wine is generally assumed to originate from grapes and yeasts, independent of bacterial metabolism, except for the action of certain spoilage species. This study shows that malolactic fermentation (MLF) significantly modifies the soluble polysaccharide (SP) concentration of various red Bordeaux wines. Wines with the highest initial SP concentration go on to present decreased SP concentration, whereas those with the lowest initial SP concentration rather go on to have a higher SP concentration after MLF. These tendencies were observed whatever the Oenococcus oeni strain (indigenous or starter) used for MLF. Neutral and charged SPs were affected, but to a degree that depended on the microorganisms driving the MLF. The SP modifications were directly linked to bacterial development, because non MLF controls did not present any significant change of SP concentration.
Geomicrobiology Journal | 2008
Sébastien Poulain; Claire Sergeant; Monique Simonoff; Claire Le Marrec; Scott Altmann
Various deep, compact, sedimentary formations have been studied in recent years as potential host rock for a repository for high-level, long-lived radioactive waste. Considering that microbial activities may influence radionuclide chemistry and migration in such environments, we investigated the potential presence of microorganisms in the Opalinus Clay formation, from unperturbed sediment samples (i.e., not affected by gallery excavation and borehole drilling) recovered under aseptic conditions in the Mont Terri Underground Rock Laboratory (Switzerland). A combination of molecular biology techniques and a cultivation-based approach suggested the presence of a few sparse autochthonous microbial cells in the Opalinus Clay. For the first time, ribosomal RNA (rRNA) genes were sequenced from enrichment cultures from such samples. The results suggested that at least two of the bacterial strains isolated were likely unknown species of the Sphingomonas and Alicyclobacillus genera, as their fully-sequenced 16S-rRNA genes shared less than 97% similarity with validly published sequences. Early genetic divergence occurring after physical isolation of bacterial ancestors in the geosphere by the sedimentation process or following later geological events may have resulted in the generation of particular taxa in the subsurface.
International Journal of Food Microbiology | 2013
Fety Jaomanjaka; Patricia Ballestra; Marguerite Dols-Lafargue; Claire Le Marrec
Temperate bacteriophages are a contributor of the genetic diversity in the lactic acid bacterium Oenococcus oeni. We used a classification scheme for oenococcal prophages based on integrase gene polymorphism, to analyze a collection of Oenococcus strains mostly isolated in the area of Bordeaux, which represented the major lineages identified through MLST schemes in the species. Genome sequences of oenococcal prophages were clustered into four integrase groups (A to D) which were related to the chromosomal integration site. The prevalence of each group was determined and we could show that members of the intB- and intC-prophage groups were rare in our panel of strains. Our study focused on the so far uncharacterized members of the intD-group. Various intD viruses could be easily isolated from wine samples, while intD lysogens could be induced to produce phages active against two permissive O. oeni isolates. These data support the role of this prophage group in the biology of O. oeni. Global alignment of three relevant intD-prophages revealed significant conservation and highlighted a number of unique ORFs that may contribute to phage and lysogen fitness.
Current Microbiology | 2003
Aurélie Baliarda; Hervé Robert; Mohamed Jebbar; Carlos Blanco; Claire Le Marrec
Through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, we identified a single-component glycine betaine transporter from Tetragenococcus halophila, a moderate halophilic lactic acid bacterium. DNA sequence analysis characterized the ButA protein as a member of the betaine choline carnitine transporter (BCCT) family, that includes a variety of previously characterized compatible solute transporters such as OpuD from Bacillus subtilis, EctP and BetP from Corynebacterium glutamicum, and BetL from Listeria monocytogenes. When expressed in the heterologous host E. coli, the permease is specific for glycine betaine and does not transport the other osmoprotectants previously described for T. halophila (i.e. carnitine, choline, dimethylsulfonioacetate, dimethylsulfoniopropionate, and ectoine). In E. coli, statement of ButA is mainly constitutive and maximal uptake activity may result from a weak osmotic induction. This is the first study demonstrating a role for a permease in osmoregulation, and GB uptake, of a lactic acid bacterium.