Marguerite Dols-Lafargue
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marguerite Dols-Lafargue.
Applied and Environmental Microbiology | 2008
Marguerite Dols-Lafargue; Hyo Young Lee; Claire Le Marrec; Alain Heyraud; Gérard Chambat; Aline Lonvaud-Funel
ABSTRACT “Ropiness” is a bacterial alteration in wines, beers, and ciders, caused by β-glucan-synthesizing pediococci. A single glucosyltransferase, Gtf, controls ropy polysaccharide synthesis. In this study, we show that the corresponding gtf gene is also present on the chromosomes of several strains of Oenococcus oeni isolated from nonropy wines. gtf is surrounded by mobile elements that may be implicated in its integration into the chromosome of O. oeni. gtf is expressed in all the gtf+ strains, and β-glucan is detected in the majority of these strains. Part of this β-glucan accumulates around the cells forming a capsule, while the other part is liberated into the medium together with heteropolysaccharides. Most of the time, this polymer excretion does not lead to ropiness in a model medium. In addition, we show that wild or recombinant bacterial strains harboring a functional gtf gene (gtf+) are more resistant to several stresses occurring in wine (alcohol, pH, and SO2) and exhibit increased adhesion capacities compared to their gtf mutant variants.
Applied and Environmental Microbiology | 2012
Stéphanie-Marie Deutsch; Sandrine Parayre; Antoine Bouchoux; Fanny Guyomarc'H; Joëlle Dewulf; Marguerite Dols-Lafargue; François Baglinière; Fabien Cousin; Hélène Falentin; Gwénaël Jan; Benoît Foligné
ABSTRACT Propionibacterium freudenreichii is a bacterial species found in Swiss-type cheeses and is also considered for its health properties. The main claimed effect is the bifidogenic property. Some strains were shown recently to display other interesting probiotic potentialities such as anti-inflammatory properties. About 30% of strains were shown to produce a surface exopolysaccharide (EPS) composed of (1→3,1→2)-β-d-glucan due to a single gene named gtfF. We hypothesized that functional properties of P. freudenreichii strains, including their anti-inflammatory properties, could be linked to the presence of β-glucan. To evaluate this hypothesis, gtfF genes of three β-glucan-producing strains were disrupted. These knockout (KO) mutants were complemented with a plasmid harboring gtfF (KO-C mutants). The absence of β-glucan in KO mutants was verified by immunological detection and transmission electron microscopy. We observed by atomic force microscopy that the absence of β-glucan in the KO mutant dramatically changed the cells topography. The capacity to adhere to polystyrene surface was increased for the KO mutants compared to wild-type (WT) strains. Anti-inflammatory properties of WT strains and mutants were analyzed by stimulation of human peripheral blood mononuclear cells (PBMCs). A significant increase of the anti-inflammatory interleukin-10 cytokine production by PBMCs was measured in the KO mutants compared to WT strains. For one strain, the role of β-glucan in mice gut persistence was assessed, and no significant difference was observed between the WT strain and its KO mutant. Thus, β-glucan appears to partly hide the anti-inflammatory properties of P. freudenreichii; which is an important result for the selection of probiotic strains.
Journal of Agricultural and Food Chemistry | 2007
Marguerite Dols-Lafargue; Emmanuel Gindreau; Claire Le Marrec; Gérard Chambat; Alain Heyraud; Aline Lonvaud-Funel
The polysaccharide content of wine is generally assumed to originate from grapes and yeasts, independent of bacterial metabolism, except for the action of certain spoilage species. This study shows that malolactic fermentation (MLF) significantly modifies the soluble polysaccharide (SP) concentration of various red Bordeaux wines. Wines with the highest initial SP concentration go on to present decreased SP concentration, whereas those with the lowest initial SP concentration rather go on to have a higher SP concentration after MLF. These tendencies were observed whatever the Oenococcus oeni strain (indigenous or starter) used for MLF. Neutral and charged SPs were affected, but to a degree that depended on the microorganisms driving the MLF. The SP modifications were directly linked to bacterial development, because non MLF controls did not present any significant change of SP concentration.
Genome Biology and Evolution | 2015
Hugo Campbell-Sills; Mariette El Khoury; Marion Favier; Andrea Romano; Franco Biasioli; Giuseppe Spano; David James Sherman; Olivier Bouchez; Emmanuel Coton; Monika Coton; Sanae Okada; Naoto Tanaka; Marguerite Dols-Lafargue
Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne.
International Journal of Food Microbiology | 2008
Stéphanie-Marie Deutsch; Hélène Falentin; Marguerite Dols-Lafargue; Gisèle LaPointe; Denis Roy
In the dairy industry, exopolysaccharides (EPS) contribute to improving the texture and viscosity of cheese and yoghurt and also receive increasing attention because of their beneficial properties for health. For lactic acid bacteria, the production of EPS is well studied. However, for dairy propionibacteria the biosynthesis of EPS is poorly documented. A polysaccharide synthase-encoding gene was identified in the genome of Propionibacterium freudenreichii subsp. shermanii TL 34 (CIP 103027). This gene best aligns with Tts, the polysaccharide synthase gene of Streptococcus pneumoniae type 37 that is responsible for the production of a beta-glucan capsular polysaccharide. PCR amplification showed the presence of an internal fragment of this gene in twelve strains of P. freudenreichii subsp. shermanii with a ropy phenotype in YEL+ medium. The gene sequence is highly conserved, as less than 1% of nucleotides differed among the 10 strains containing the complete gtf gene. The same primers failed to detect the gene in Propionibacterium acidipropionici strain TL 47, which is known to excrete exopolysaccharides in milk. The presence of (1-->3, 1-->2)-beta-d-glucan capsule was demonstrated for 7 out of 12 strains by agglutination with a S. pneumoniae-type 37-specific antiserum. The presence of mRNA corresponding to the gene was detected by RT-PCR in three strains at both exponential and stationary growth phases. This work represents the first identification of a polysaccharide synthase gene of P. freudenreichii, and further studies will be undertaken to elucidate the role of capsular EPS.
Food Microbiology | 2016
Maria Dimopoulou; Tiphaine Bardeau; Pierre-Yves Ramonet; Cécile Miot-Certier; Olivier Claisse; Thiery Doco; Melina Petrel; Marguerite Dols-Lafargue
Oenococcus oeni (O. oeni), which is the main species that drives malolactic fermentation (FML), an essential step for wine microbial stabilization and quality improvement, is known to produce exopolysaccharides (EPS). Depending on the strain, these EPS can be soluble, remain attached to the cell or both. In the present study, fourteen strains were examined for eps gene content and EPS production capacities. Cell-linked and soluble heteropolysaccharides made of glucose, galactose and rhamnose, soluble β-glucan, and soluble dextran or levan were found, depending on the strain. The protective potential of either cell-linked heteropolysaccharides or dextrans produced was then studied during freeze drying of the bacterial strains.
Archive | 2009
Marguerite Dols-Lafargue; Aline Lonvaud-Funel
In this chapter, we describe the formation of polysaccharides (PS) by some of the microorganisms most frequently encountered in grapes, must and wine: Botrytis cinerea, Saccharomyces cerevisiae, non-Saccharomyces, Oenococcus oeni and other wine lactic acid bacteria. The structure of the polymer produced, the metabolic pathways identified, the putative or demonstrated benefits linked to capsular PS formation for the microorganism and the impact of the PS released on wine quality are described.
Scientific Reports | 2018
Marta Avramova; Alice Cibrario; Emilien Peltier; Monika Coton; Emmanuel Coton; Joseph Schacherer; Giuseppe Spano; Vittorio Capozzi; Giuseppe Blaiotta; Franck Salin; Marguerite Dols-Lafargue; Paul R. Grbin; Chris Curtin; Warren Albertin; Isabelle Masneuf-Pomarede
Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO2). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.
Molecular Biotechnology | 2017
Maria Dimopoulou; Olivier Claisse; Lucie Dutilh; Cécile Miot-Sertier; Patricia Ballestra; Marguerite Dols-Lafargue
Oenococcus oeni is the main bacterial species that drives malolactic fermentation in wine. Most O. oeni strains produce capsular exopolysaccharides (EPS) that may contribute to protect them in the wine hostile environment. In O. oeni genome sequences, several genes are predicted to encode priming glycosyltransferases (pGTs). These enzymes are essential for EPS formation as they catalyze the first biosynthetic step through the formation of a phosphoanhydride bond between a hexose-1-phosphate and a lipid carrier undecaprenyl phosphate. In many microorganisms, mutations abolishing the pGT activity also abolish the EPS formation. We first made an in silico analysis of all the genes encoding putative pGT over 50 distinct O. oeni genome sequences. Two polyisoprenyl-phosphate-hexose-1-phosphate transferases, WoaA and WobA, and a glycosyltransferase (It3) were particularly examined for their topology and amino acid sequence. Several isoforms of these enzymes were then expressed in E. coli, and their substrate specificity was examined in vitro. The substrate specificity varied depending on the protein isoform examined, and several mutations were shown to abolish WobA activity but not EPS synthesis. Further analysis of woaA and wobA gene expression levels suggests that WoaA could replace the deficient WobA and maintain EPS formation.
Frontiers in Microbiology | 2018
Maria Dimopoulou; Jerôme Raffenne; Olivier Claisse; Cécile Miot-Sertier; Nerea Iturmendi; Virginie Moine; Joana Coulon; Marguerite Dols-Lafargue
Oenococcus oeni is the lactic acid bacterium that most commonly drives malolactic fermentation (MLF) in wine. Though the importance of MLF in terms of wine microbial stability and sensory improvement is well established, it remains a winemaking step not so easy to control. O. oeni displays many adaptation tools to resist the harsh wine conditions which explain its natural dominance at this stage of winemaking. Previous findings showed that capsular polysaccharides and endogenous produced dextran increased the survival rate and the conservation time of malolactic starters. In this paper, we showed that exopolysaccharides specific production rates were increased in the presence of single stressors relevant to wine (pH, ethanol). The transcription of the associated genes was investigated in distinct O. oeni strains. The conditions in which eps genes and EPS synthesis were most stimulated were then evaluated for the production of freeze dried malolactic starters, for acclimation procedures and for MLF efficiency. Sensory analysis tests on the resulting wines were finally performed.