Claire Loiseau
San Francisco State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Loiseau.
Molecular Ecology | 2009
Anthony Chasar; Claire Loiseau; Gediminas Valkiūnas; Tatjana A. Iezhova; Thomas B. Smith; Ravinder N. M. Sehgal
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector‐borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites (Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon) from these sites in two widespread species of African rainforest birds, the yellow‐whiskered greenbul (Andropadus latirostris, Pycnonotidae) and the olive sunbird (Cyanomitra olivacea, Nectariniidae). Twenty‐six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats (Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea, as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.
Journal of Parasitology | 2009
Gediminas Valkiūnas; Tatjana A. Iezhova; Claire Loiseau; Ravinder N. M. Sehgal
Abstract Some discrepancies between microscopy and PCR-based methods have been recently recorded in the diagnosis of Leucocytozoon spp. infection in naturally infected birds. To clarify this issue, blood samples from 109 yellow-whiskered greenbuls Andropadus latirostris were investigated using both the microscopic examination of blood films and a nested mitochondrial cytochrome b PCR. The overall prevalence of Leucocytozoon spp. infection was 4% after the standard microscopic examination and 17% using the PCR diagnostics. Samples from 9 randomly chosen birds that were microscopy negative, but PCR positive, were then examined microscopically by screening 2 entire blood films from each individual bird. Sporozoites of Leucocytozoon spp. were observed in 4 birds, and 1 gametocyte of the parasite was seen in each of 2 birds. We conclude that sensitive PCR-based diagnostics are able to detect extremely light parasitemias of circulating sporozoites and gametocytes of hemosporidian parasites. Because of the PCR detection of sporozoites of unknown fate in the peripheral circulation, conclusions regarding the distribution of hemosporidian lineages in wildlife should be made with caution. To be accepted as the lineages of successfully developing species of hemosporidians, such PCR-based information should be supported with the detection of blood stages of the parasites. The present study emphasizes the crucial need for a synthesis of information provided by the tools of traditional parasitology and molecular biology, particularly in field studies of blood parasites.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Ravinder N. M. Sehgal; Wolfgang Buermann; Ryan J. Harrigan; Camille Bonneaud; Claire Loiseau; Anthony Chasar; Irem Sepil; Gediminas Valkiūnas; Tatjana A. Iezhova; Sassan Saatchi; Thomas B. Smith
Critical to the mitigation of parasitic vector-borne diseases is the development of accurate spatial predictions that integrate environmental conditions conducive to pathogen proliferation. Species of Plasmodium and Trypanosoma readily infect humans, and are also common in birds. Here, we develop predictive spatial models for the prevalence of these blood parasites in the olive sunbird (Cyanomitra olivacea). Since this species exhibits high natural parasite prevalence and occupies diverse habitats in tropical Africa, it represents a distinctive ecological model system for studying vector-borne pathogens. We used PCR and microscopy to screen for haematozoa from 28 sites in Central and West Africa. Species distribution models were constructed to associate ground-based and remotely sensed environmental variables with parasite presence. We then used machine-learning algorithm models to identify relationships between parasite prevalence and environmental predictors. Finally, predictive maps were generated by projecting model outputs to geographically unsampled areas. Results indicate that for Plasmodium spp., the maximum temperature of the warmest month was most important in predicting prevalence. For Trypanosoma spp., seasonal canopy moisture variability was the most important predictor. The models presented here visualize gradients of disease prevalence, identify pathogen hotspots and will be instrumental in studying the effects of ecological change on these and other pathogens.
Journal of Parasitology | 2010
Claire Loiseau; Tatjana A. Iezhova; Gediminas Valkiūnas; Anthony Chasar; Anna Hutchinson; Wolfgang Buermann; Thomas B. Smith; Ravinder N. M. Sehgal
Abstract Spatial heterogeneity influences the distribution, prevalence, and diversity of haemosporidian parasites. Previous studies have found complex patterns of prevalence with respect to habitat characteristics and parasite genotype, and their interactions, but there is little information regarding how parasitemia intensity and the prevalence of co-infections may vary in space. Here, using both molecular methods and microscopy, we report an analysis of the variation of parasitemia intensity and co-infections of avian haemosporidian parasites (Plasmodium and Haemoproteus species) in 2 common African birds species, the yellow-whiskered greenbul (Andropadus latirostris) and the olive sunbird (Cyanomitra olivacea), at 3 sites with distinct habitat characteristics in Ghana. First, we found an interaction between the site and host species for the prevalence of Plasmodium spp. and Haemoproteus spp. For the olive sunbird, the prevalence of Plasmodium spp., as well as the number of individuals with co-infections, varied significantly among the sites, but these measures remained constant for the yellow-whiskered greenbul. In addition, yellow-whiskered greenbuls infected with Haemoproteus spp. were found only at 1 site. Furthermore, for both bird species, the parasitemia intensity of Plasmodium spp. varied significantly among the 3 sites, but with opposing trends. These results suggest that spatial heterogeneity differently affects haemosporidian infection parameters in these vertebrate-hosts. Environmental conditions here can either favor or reduce parasite infection. We discuss the implications of these discrepancies for conservation and ecological studies of infectious diseases in natural populations.
Molecular Ecology | 2012
Claire Loiseau; Ryan J. Harrigan; Alexandre Robert; Rauri C. K. Bowie; Henri A. Thomassen; Thomas B. Smith; Ravinder N. M. Sehgal
Studies of both vertebrates and invertebrates have suggested that specialists, as compared to generalists, are likely to suffer more serious declines in response to environmental change. Less is known about the effects of environmental conditions on specialist versus generalist parasites. Here, we study the evolutionary strategies of malaria parasites (Plasmodium spp.) among different bird host communities. We determined the parasite diversity and prevalence of avian malaria in three bird communities in the lowland forests in Cameroon, highland forests in East Africa and fynbos in South Africa. We calculated the host specificity index of parasites to examine the range of hosts parasitized as a function of the habitat and investigated the phylogenetic relationships of parasites. First, using phylogenetic and ancestral reconstruction analyses, we found an evolutionary tendency for generalist malaria parasites to become specialists. The transition rate at which generalists become specialists was nearly four times as great as the rate at which specialists become generalists. We also found more specialist parasites and greater parasite diversity in African lowland rainforests as compared to the more climatically variable habitats of the fynbos and the highland forests. Thus, with environmental changes, we anticipate a change in the distribution of both specialist and generalist parasites with potential impacts on bird communities.
PLOS ONE | 2012
Claire Loiseau; Ryan J. Harrigan; Anthony J. Cornel; Sue L. Guers; Molly Dodge; Timothy Marzec; Jenny S. Carlson; Bruce Seppi; Ravinder N. M. Sehgal
The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations.
Malaria Journal | 2009
Kevin Y. Njabo; Anthony J. Cornel; Ravinder N. M. Sehgal; Claire Loiseau; Wolfgang Buermann; Ryan J. Harrigan; John P. Pollinger; Gediminas Valkiūnas; Thomas B. Smith
BackgroundThe mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife.MethodsPlasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites.ResultsIn total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families.ConclusionIdentifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes.
Parasitology Research | 2008
Gediminas Valkiūnas; Tatjana A. Iezhova; Claire Loiseau; Anthony Chasar; Thomas B. Smith; Ravinder N. M. Sehgal
Plasmodium (Novyella) megaglobularis n. sp. was recorded in the olive sunbird Cyanomitra olivacea, and Plasmodium (Novyella) globularis n. sp. and Haemoproteus (Parahaemoproteus) vacuolatus n. sp. were found in the yellow-whiskered greenbul Andropadus latirostris in rainforests of Ghana and Cameroon. These parasites are described based on the morphology of their blood stages and a segment of the mitochondrial cytochrome b gene, which can be used for molecular identification and diagnosis of these species. Illustrations of blood stages of new species are given, and phylogenetic analysis identifies deoxyribonucleic acid (DNA) lineages closely related to these parasites. Traditional taxonomy of avian pigment-forming haemosporidians of the families Plasmodiidae and Haemoproteidae is discussed based on the recent molecular phylogenies of these parasites. We conclude that further work to increase the number of precise linkages between haemosporidian DNA sequences and their corresponding morphospecies is needed before revising the current classification of haemosporidians. This study emphasises the value of both the polymerase chain reaction and microscopy in the identification of avian haemosporidian parasites.
Parasitology Research | 2009
Gediminas Valkiūnas; Tatjana A. Iezhova; Claire Loiseau; Thomas B. Smith; Ravinder N. M. Sehgal
Blood samples from 655 passerine birds were collected in rainforests of Ghana and Cameroon and examined both by microscopy and polymerase chain reaction (PCR)-based techniques. The overall prevalence of Plasmodium spp. was 46.6%, as determined by combining the results of both these diagnostic methods. In comparison to PCR-based diagnostics, microscopic examination of blood films was more sensitive in determining simultaneous infection of Plasmodium spp., but both detection methods showed similar trends of prevalence of malaria parasites in the same study sites. Plasmodium (Novyella) lucens n. sp., Plasmodium (Novyella) multivacuolaris n. sp. and Plasmodium (Novyella) parahexamerium n. sp. were found in the olive sunbird Cyanomitra olivacea (Nectariniidae), yellow-whiskered greenbul Andropadus latirostris (Picnonotidae), and white-tailed alethe Alethe diademata (Turdidae), respectively. These parasites are described based on the morphology of their blood stages and a segment of the mitochondrial cytochrome b (cyt b) gene, which can be used for molecular identification and diagnosis of these species. Illustrations of blood stages of new species are given, and phylogenetic analysis identifies DNA lineages closely related to these parasites. Malaria parasites of the subgenus Novyella with small erythrocytic meronts clearly predominate in African passerines. It is probable that the development of such meronts is a characteristic feature of evolution of Plasmodium spp. in African rainforest birds. Subgeneric taxonomy of avian Plasmodium spp. is discussed based on the recent molecular phylogenies of these parasites. It is concluded that a multi-genome phylogeny is needed before revising the current subgeneric classification of Plasmodium. We supported a hypothesis by Hellgren, Križanauskienė, Valkiūnas, Bensch (J Parasitol 93:889–896, 2007), according to which, haemosporidian species with a genetic differentiation of over 5% in mitochondrial cyt b gene are expected to be morphologically differentiated. This study emphasises the importance of employing both PCR-based and microscopic methods in taxonomic, ecological and evolutionary investigations of avian haemosporidian parasites.
International Journal for Parasitology | 2014
Khouanchy S. Oakgrove; Ryan J. Harrigan; Claire Loiseau; Sue L. Guers; Bruce Seppi; Ravinder N. M. Sehgal
Avian species are commonly infected by multiple parasites, however few studies have investigated the environmental determinants of the prevalence of co-infection over a large scale. Here we believe that we report the first, detailed ecological study of the prevalence, diversity and co-infections of four avian blood-borne parasite genera: Plasmodium spp., Haemoproteus spp., Leucocytozoon spp. and Trypanosoma spp. We collected blood samples from 47 resident and migratory bird species across a latitudinal gradient in Alaska. From the patterns observed at collection sites, random forest models were used to provide evidence of associations between bioclimatic conditions and the prevalence of parasite co-infection distribution. Molecular screening revealed a higher prevalence of haematozoa (53%) in Alaska than previously reported. Leucocytozoons had the highest diversity, prevalence and prevalence of co-infection. Leucocytozoon prevalence (35%) positively correlated with Trypanosoma prevalence (11%), negatively correlated with Haemoproteus prevalence (14%) and had no correlation with Plasmodium prevalence (7%). We found temperature, precipitation and tree cover to be the primary environmental drivers that show a relationship with the prevalence of co-infection. The results provide insight into the impacts of bioclimatic drivers on parasite ecology and intra-host interactions, and have implications for the study of infectious diseases in rapidly changing environments.