Ravinder N. M. Sehgal
San Francisco State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ravinder N. M. Sehgal.
Journal of Parasitology | 2008
Gediminas Valkiūnas; Tatjana A. Iezhova; Asta Križanauskienė; Vaidas Palinauskas; Ravinder N. M. Sehgal; Staffan Bensch
Abstract We compared information obtained by both microscopy and nested mitochondrial cytochrome b PCR in determining prevalence of haemosporidian infections in naturally infected birds. Blood samples from 472 birds of 11 species belonging to 7 families and 4 orders were collected in Europe, Africa, and North America. Skilled investigators investigated them using the PCR-based screening and microscopic examination of stained blood films. The overall prevalence of haemosporidian infections, which was determined by combining results of both these methods, was 60%. Both methods slightly underestimated the overall prevalence of infection, which was 54.2% after the PCR diagnostics and 53.6% after microscopic examination. Importantly, both these tools showed similar prevalence for Haemoproteus spp. (21% by PCR and 22% by microscopy), Plasmodium spp. (17% and 22%), and Leucocytozoon spp. (30% and 25%), verifying that microscopy is a reliable tool in determining patterns of distribution of blood haemosporidian parasites in naturally infected birds. We encourage using optical microscopy in studies of blood parasites in parallel to the now widely employed molecular methods. Microscopy is unlikely to result in false positives, which is a major concern in large-scale PCR studies. Moreover, it is relatively inexpensive and provides valuable information regarding the ways in which molecular methods can be further improved and most effectively applied, especially in the field studies of parasites. Importantly, blood films, which are used for microscopic examination, should be of good quality; they should be examined properly by skilled investigators. In spite of the substantial time investments associated with microscopy, such examination provides opportunities for simultaneous determination and verification of taxonomically different parasites. Presently, different PCR protocols must be used for the detection of parasites belonging to different genera; this is expensive and time consuming.
Journal of Parasitology | 2002
F. Alexander Richard; Ravinder N. M. Sehgal; Hugh I. Jones; Thomas B. Smith
Here, 4 polymerase chain reaction (PCR) assays are compared to test for the presence of avian malaria, including both the Plasmodium and Haemoproteus genera, in 29 different species of African rainforest birds. Two of these PCR assays use primer sets that amplify fragments of the cytochrome b (cyt b) gene of Plasmodium; the other 2 target the 18S ribosomal subunit gene. These PCR assays were performed using genomic DNA extracted from blood and subsequently compared with the results obtained by microscopic examination of blood smears taken from the same individuals. The 2 primer sets amplifying the cyt b gene were found to perform more reliably than those that target the 18S rRNA gene and yielded a substantial number of positive samples that were undetected by blood smear analysis. Of all the individuals screened by PCR, 40% tested positive for avian malaria, whereas 27% tested positive by blood smear analysis. Although sequence variation in the parasites may prohibit the specific alignment of primers and the subsequent PCR amplification of some individuals, PCR, once optimized, is faster, cheaper, and more reliable than blood smear analysis for large-scale screening.
Molecular Ecology | 2001
Ravinder N. M. Sehgal; Hugh I. Jones; Thomas B. Smith
Studies of host–parasite interactions in birds have contributed greatly to our understanding of the evolution and ecology of disease. Here we employ molecular techniques to determine the incidence and study the host‐specificity of parasitic trypanosomes in the African avifauna. We developed a polymerase chain reaction (PCR)‐based diagnostic test that amplified the small subunit ribosomal RNA gene (SSU rRNA) of Trypanosoma from avian blood samples. This nested PCR assay complements and corroborates information obtained by the traditional method of blood smear analysis. The test was used to describe the incidence of trypanosomes in 479 host individuals representing 71 rainforest bird species from Cameroon, the Ivory Coast and Equatorial Guinea. Forty‐two (59%) of these potential host species harboured trypanosomes and 189 individuals (35%) were infected. To examine host and geographical specificity, we examined the morphology and sequenced a portion of the SSU rRNA gene from representative trypanosomes drawn from different hosts and collecting locations. In traditional blood smear analyses we identified two trypanosome morphospecies, T. avium and T. everetti. Our molecular and morphological results were congruent in that these two morphospecies had highly divergent SSU rRNA sequences, but the molecular assay also identified cryptic variation in T. avium, in which we found seven closely allied haplotypes. The pattern of sequence diversity within T. avium provides evidence for widespread trypanosome mixing across avian host taxa and across geographical locations. For example, T. avium lineages with identical haplotypes infected birds from different families, whereas single host species were infected by T. avium lineages with different haplotypes. Furthermore, some conspecific hosts from geographically distant sampling locations were infected with the same trypanosome lineage, but other individuals from those locations harboured different trypanosome lineages. This apparent lack of host or geographical specificity may have important consequences for the evolutionary and ecological interactions between parasitic trypanosomes and their avian hosts.
Molecular Ecology | 2009
Anthony Chasar; Claire Loiseau; Gediminas Valkiūnas; Tatjana A. Iezhova; Thomas B. Smith; Ravinder N. M. Sehgal
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector‐borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites (Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon) from these sites in two widespread species of African rainforest birds, the yellow‐whiskered greenbul (Andropadus latirostris, Pycnonotidae) and the olive sunbird (Cyanomitra olivacea, Nectariniidae). Twenty‐six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats (Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea, as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.
Molecular Ecology | 2011
Kevin Y. Njabo; Anthony J. Cornel; Camille Bonneaud; Erin Toffelmier; Ravinder N. M. Sehgal; Gediminas Valkiūnas; Andrew F. Russell; Thomas B. Smith
Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector‐host‐parasite system is essential. Little is known about avian parasite–vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR‐based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild‐caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex and Mansonia) were infected with twenty‐two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one‐third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate–host breadth. This study suggests extensive invertebrate host shifts in mosquito–parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species.
Journal of Parasitology | 2009
Gediminas Valkiūnas; Tatjana A. Iezhova; Claire Loiseau; Ravinder N. M. Sehgal
Abstract Some discrepancies between microscopy and PCR-based methods have been recently recorded in the diagnosis of Leucocytozoon spp. infection in naturally infected birds. To clarify this issue, blood samples from 109 yellow-whiskered greenbuls Andropadus latirostris were investigated using both the microscopic examination of blood films and a nested mitochondrial cytochrome b PCR. The overall prevalence of Leucocytozoon spp. infection was 4% after the standard microscopic examination and 17% using the PCR diagnostics. Samples from 9 randomly chosen birds that were microscopy negative, but PCR positive, were then examined microscopically by screening 2 entire blood films from each individual bird. Sporozoites of Leucocytozoon spp. were observed in 4 birds, and 1 gametocyte of the parasite was seen in each of 2 birds. We conclude that sensitive PCR-based diagnostics are able to detect extremely light parasitemias of circulating sporozoites and gametocytes of hemosporidian parasites. Because of the PCR detection of sporozoites of unknown fate in the peripheral circulation, conclusions regarding the distribution of hemosporidian lineages in wildlife should be made with caution. To be accepted as the lineages of successfully developing species of hemosporidians, such PCR-based information should be supported with the detection of blood stages of the parasites. The present study emphasizes the crucial need for a synthesis of information provided by the tools of traditional parasitology and molecular biology, particularly in field studies of blood parasites.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Ravinder N. M. Sehgal; Wolfgang Buermann; Ryan J. Harrigan; Camille Bonneaud; Claire Loiseau; Anthony Chasar; Irem Sepil; Gediminas Valkiūnas; Tatjana A. Iezhova; Sassan Saatchi; Thomas B. Smith
Critical to the mitigation of parasitic vector-borne diseases is the development of accurate spatial predictions that integrate environmental conditions conducive to pathogen proliferation. Species of Plasmodium and Trypanosoma readily infect humans, and are also common in birds. Here, we develop predictive spatial models for the prevalence of these blood parasites in the olive sunbird (Cyanomitra olivacea). Since this species exhibits high natural parasite prevalence and occupies diverse habitats in tropical Africa, it represents a distinctive ecological model system for studying vector-borne pathogens. We used PCR and microscopy to screen for haematozoa from 28 sites in Central and West Africa. Species distribution models were constructed to associate ground-based and remotely sensed environmental variables with parasite presence. We then used machine-learning algorithm models to identify relationships between parasite prevalence and environmental predictors. Finally, predictive maps were generated by projecting model outputs to geographically unsampled areas. Results indicate that for Plasmodium spp., the maximum temperature of the warmest month was most important in predicting prevalence. For Trypanosoma spp., seasonal canopy moisture variability was the most important predictor. The models presented here visualize gradients of disease prevalence, identify pathogen hotspots and will be instrumental in studying the effects of ecological change on these and other pathogens.
Journal of Parasitology | 2006
Ravinder N. M. Sehgal; Angus C. Hull; Nancy L. Anderson; Gediminas Valkiūnas; Michail J. Markovets; Shiho Kawamura; Lisa A. Tell
Species of Leucocytozoon (Haemosporida, Leucocytozoidae) traditionally have been described based on morphological characters of their blood stages and host cells, with limited information on their avian host specificity. Based on the current taxonomy, Leucocytozoon toddi is the sole valid species of leucocytozoids parasitizing falconiform birds. Using a nested polymerase chain reaction protocol, we determined the prevalence of Leucocytozoon infection in 5 species of diurnal raptors from California. Of 591 birds tested, 177 (29.9%) were infected with Leucocytozoon toddi. Subsequent phylogenetic analysis of the cytochrome b gene revealed that distinct haplotypes are present in hawks of these genera. Haplotypes present in Buteo spp. are not found in Accipiter spp., and there is a 10.9% sequence divergence between the 2 lineage clades. In addition, Leucocytozoon sp. from Accipiter spp. from Europe group more closely with parasites found in Accipiter spp. from California than the same California Accipiter species do with their sympatric Buteo spp. Similarly, a Leucocytozoon haplotype from a Common Buzzard (Buteo buteo) from Kazakhstan forms a monophyletic lineage with a parasite from B. jamaicensis from California. These results suggest that Leucocytozoon toddi is most likely a group of cryptic species, with 1 species infecting Buteo spp. and 1 or more species, or subspecies, infecting Accipiter spp.
Journal of Parasitology | 2010
Claire Loiseau; Tatjana A. Iezhova; Gediminas Valkiūnas; Anthony Chasar; Anna Hutchinson; Wolfgang Buermann; Thomas B. Smith; Ravinder N. M. Sehgal
Abstract Spatial heterogeneity influences the distribution, prevalence, and diversity of haemosporidian parasites. Previous studies have found complex patterns of prevalence with respect to habitat characteristics and parasite genotype, and their interactions, but there is little information regarding how parasitemia intensity and the prevalence of co-infections may vary in space. Here, using both molecular methods and microscopy, we report an analysis of the variation of parasitemia intensity and co-infections of avian haemosporidian parasites (Plasmodium and Haemoproteus species) in 2 common African birds species, the yellow-whiskered greenbul (Andropadus latirostris) and the olive sunbird (Cyanomitra olivacea), at 3 sites with distinct habitat characteristics in Ghana. First, we found an interaction between the site and host species for the prevalence of Plasmodium spp. and Haemoproteus spp. For the olive sunbird, the prevalence of Plasmodium spp., as well as the number of individuals with co-infections, varied significantly among the sites, but these measures remained constant for the yellow-whiskered greenbul. In addition, yellow-whiskered greenbuls infected with Haemoproteus spp. were found only at 1 site. Furthermore, for both bird species, the parasitemia intensity of Plasmodium spp. varied significantly among the 3 sites, but with opposing trends. These results suggest that spatial heterogeneity differently affects haemosporidian infection parameters in these vertebrate-hosts. Environmental conditions here can either favor or reduce parasite infection. We discuss the implications of these discrepancies for conservation and ecological studies of infectious diseases in natural populations.
Molecular Ecology | 2012
Claire Loiseau; Ryan J. Harrigan; Alexandre Robert; Rauri C. K. Bowie; Henri A. Thomassen; Thomas B. Smith; Ravinder N. M. Sehgal
Studies of both vertebrates and invertebrates have suggested that specialists, as compared to generalists, are likely to suffer more serious declines in response to environmental change. Less is known about the effects of environmental conditions on specialist versus generalist parasites. Here, we study the evolutionary strategies of malaria parasites (Plasmodium spp.) among different bird host communities. We determined the parasite diversity and prevalence of avian malaria in three bird communities in the lowland forests in Cameroon, highland forests in East Africa and fynbos in South Africa. We calculated the host specificity index of parasites to examine the range of hosts parasitized as a function of the habitat and investigated the phylogenetic relationships of parasites. First, using phylogenetic and ancestral reconstruction analyses, we found an evolutionary tendency for generalist malaria parasites to become specialists. The transition rate at which generalists become specialists was nearly four times as great as the rate at which specialists become generalists. We also found more specialist parasites and greater parasite diversity in African lowland rainforests as compared to the more climatically variable habitats of the fynbos and the highland forests. Thus, with environmental changes, we anticipate a change in the distribution of both specialist and generalist parasites with potential impacts on bird communities.