Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Pouget is active.

Publication


Featured researches published by Claire Pouget.


Development | 2006

Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk

Claire Pouget; Rodolphe Gautier; Marie-Aimée Teillet; Thierry Jaffredo

We have previously shown that endothelial cells of the aortic floor give rise to hematopoietic cells, revealing the existence of an aortic hemangioblast. It has been proposed that the restriction of hematopoiesis to the aortic floor is based on the existence of two different and complementary endothelial lineages that form the vessel: one originating from the somite would contribute to the roof and sides, another from the splanchnopleura would contribute to the floor. Using quail/chick orthotopic transplantations of paraxial mesoderm, we have traced the distribution of somite-derived endothelial cells during aortic hematopoiesis. We show that the aortic endothelium undergoes two successive waves of remodeling by somitic cells: one when the aortae are still paired, during which the initial roof and sides of the vessels are renewed; and a second, associated to aortic hematopoiesis, in which the hemogenic floor is replaced by somite endothelial cells. This floor thus appears as a temporary structure, spent out and replaced. In addition, the somite contributes to smooth muscle cells of the aorta. In vivo lineage tracing experiments with non-replicative retroviral vectors showed that endothelial cells do not give rise to smooth muscle cells. However, in vitro, purified endothelial cells acquire smooth muscle cells characteristics. Taken together, these data point to the crucial role of the somite in shaping the aorta and also give an explanation for the short life of aortic hematopoiesis.


Developmental Cell | 2009

Hedgehog and Bmp Polarize Hematopoietic Stem Cell Emergence in the Zebrafish Dorsal Aorta

Robert N. Wilkinson; Claire Pouget; Martin Gering; Angela J. Russell; Stephen G. Davies; David Kimelman; Roger Patient

Hematopoietic stem cells (HSCs) are first detected in the floor of the embryonic dorsal aorta (DA), and we investigate the signals that induce the HSC program there. We show that while continued Hedgehog (Hh) signaling from the overlying midline structures maintains the arterial program characteristic of the DA roof, a ventral Bmp4 signal induces the blood stem cell program in the DA floor. This patterning of the DA by Hh and Bmp is the mirror image of that in the neural tube, with Hh favoring dorsal rather than ventral cell types, and Bmp favoring ventral rather than dorsal. With the majority of current data supporting a model whereby HSCs derive from arterial endothelium, our data identify the signal driving this conversion. These findings are important for the study of the production of HSCs from embryonic stem cells and establish a paradigm for the development of adult stem cells.


Nature | 2014

Jam1a-Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling

Isao Kobayashi; Jingjing Kobayashi-Sun; Albert D. Kim; Claire Pouget; Naonobu Fujita; Toshio Suda; David Traver

Notch signalling plays a key role in the generation of haematopoietic stem cells (HSCs) during vertebrate development and requires intimate contact between signal-emitting and signal-receiving cells, although little is known regarding when, where and how these intercellular events occur. We previously reported that the somitic Notch ligands, Dlc and Dld, are essential for HSC specification. It has remained unclear, however, how these somitic requirements are connected to the later emergence of HSCs from the dorsal aorta. Here we show in zebrafish that Notch signalling establishes HSC fate as their shared vascular precursors migrate across the ventral face of the somite and that junctional adhesion molecules (JAMs) mediate this required Notch signal transduction. HSC precursors express jam1a (also known as f11r) and migrate axially across the ventral somite, where Jam2a and the Notch ligands Dlc and Dld are expressed. Despite no alteration in the expression of Notch ligand or receptor genes, loss of function of jam1a led to loss of Notch signalling and loss of HSCs. Enforced activation of Notch in shared vascular precursors rescued HSCs in jam1a or jam2a deficient embryos. Together, these results indicate that Jam1a–Jam2a interactions facilitate the transduction of requisite Notch signals from the somite to the precursors of HSCs, and that these events occur well before formation of the dorsal aorta.


Development | 2015

Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo

Emerald Butko; Martin Distel; Claire Pouget; Bart Weijts; Isao Kobayashi; Kevin Ng; Christian Mosimann; Fabienne E. Poulain; Adam D. McPherson; Chih-Wen Ni; David L. Stachura; Natasha Del Cid; Raquel Espín-Palazón; Nathan D. Lawson; Richard I. Dorsky; Wilson Clements; David Traver

The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system. Highlighted article: Gata2b marks a distinct population of embryonic endothelial cells that gives rise to hematopoietic stem cells and is required for the hemogenic potential of these cells.


Developmental Biology | 2016

Complex regulation of HSC emergence by the Notch signaling pathway

Emerald Butko; Claire Pouget; David Traver

Hematopoietic stem cells are formed during embryonic development, and serve as the foundation of the definitive blood program for life. Notch signaling has been well established as an essential direct contributor to HSC specification. However, several recent studies have indicated that the contribution of Notch signaling is complex. HSC specification requires multiple Notch signaling inputs, some received directly by hematopoietic precursors, and others that occur indirectly within neighboring somites. Of note, proinflammatory signals provided by primitive myeloid cells are needed for HSC specification via upregulation of the Notch pathway in hemogenic endothelium. In addition to multiple requirements for Notch activation, recent studies indicate that Notch signaling must subsequently be repressed to permit HSC emergence. Finally, Notch must then be reactivated to maintain HSC fate. In this review, we discuss the growing understanding of the dynamic contributions of Notch signaling to the establishment of hematopoiesis during development.


Nature Communications | 2014

FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway

Claire Pouget; Tessa Peterkin; Filipa Costa Simões; Yoonsung Lee; David Traver; Roger Patient

Haematopoietic stem cells (HSCs) are produced during embryogenesis from the floor of the dorsal aorta. The localization of HSCs is dependent on the presence of instructive signals on the ventral side of the vessel. The nature of the extrinsic molecular signals that control the aortic haematopoietic niche is currently poorly understood. Here we demonstrate a novel requirement for FGF signalling in the specification of aortic haemogenic endothelium. Our results demonstrate that FGF signalling normally acts to repress BMP activity in the subaortic mesenchyme through transcriptional inhibition of bmp4, as well as through activation of two BMP antagonists, noggin2 and gremlin1a. Taken together, these findings demonstrate a key role for FGF signalling in establishment of the developmental HSC niche via its regulation of BMP activity in the subaortic mesenchyme. These results should help inform strategies to recapitulate the development of HSCs in vitro from pluripotent precursors.


Nature Communications | 2014

FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling

Yoonsung Lee; Jennifer E. Manegold; Albert D. Kim; Claire Pouget; David L. Stachura; Wilson Clements; David Traver

Hematopoietic stem cells (HSCs) derive from hemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to hematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signaling in HSC emergence. This requirement is non-cell-autonomous, and acts within the somite to bridge the Wnt and Notch signaling pathways. We previously demonstrated that Wnt16 regulates the somitic expression of two Notch ligands, deltaC (dlc) and deltaD (dld), whose combined function is required for HSC fate. How Wnt16 connects to Notch function has remained an open question. Our current studies demonstrate that FGF signaling, via FGF receptor 4 (Fgfr4), mediates a signal transduction pathway between Wnt16 and Dlc, but not Dld, to regulate HSC specification. Our findings demonstrate that FGF signaling acts as a key molecular relay within the developmental HSC niche to instruct HSC fate.


The International Journal of Developmental Biology | 2010

Aortic remodelling during hemogenesis: is the chicken paradigm unique?

Thierry Jaffredo; Charlotte Richard; Claire Pouget; Marie-Aimée Teillet; Karine Bollerot; Rodolphe Gautier; Cecile Drevon

Since the era of the ancient Egyptians and Greeks, the avian embryo has been a subject of intense interest to visualize the first steps of development. It has served as a pioneer model to scrutinize the question of hematopoietic development from the beginning of the 20th century. Its large size and easy accessibility have permitted the development of techniques dedicated to following the origins and fates of different cell populations. Here, we shall review how the avian model has brought major contributions to our understanding of the development of the hematopoietic system in the past four decades and how these discoveries have influenced our knowledge of mammalian hematopoietic development. The discovery of an intra-embryonic source of hematopoietic cells and the developmental link between endothelial cells and hematopoietic cells will be presented. We shall then point to the pivotal role of the somite in the construction of the aorta and hematopoietic production and demonstrate how two somitic compartments cooperate to construct the definitive aorta. We shall finish by showing how fate-mapping experiments have allowed the identification of the tissue which gives rise to the sub-aortic mesenchyme. Taken together, this review aims to give an overview of how and to what extent the avian embryo has contributed to our knowledge of developmental hematopoiesis.


Cell Reports | 2016

Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells

Stephanie Grainger; Jenna Richter; Raquel Espín Palazón; Claire Pouget; Brianna Lonquich; Sara Wirth; Kathrin S. Grassme; Wiebke Herzog; Matthew Swift; Brant M. Weinstein; David Traver; Karl Willert

Summary All mature blood cell types in the adult animal arise from hematopoietic stem and progenitor cells (HSPCs). However, the developmental cues regulating HSPC ontogeny are incompletely understood. In particular, the details surrounding a requirement for Wnt/β-catenin signaling in the development of mature HSPCs are controversial and difficult to consolidate. Using zebrafish, we demonstrate that Wnt signaling is required to direct an amplification of HSPCs in the aorta. Wnt9a is specifically required for this process and cannot be replaced by Wnt9b or Wnt3a. This proliferative event occurs independently of initial HSPC fate specification, and the Wnt9a input is required prior to aorta formation. HSPC arterial amplification occurs prior to seeding of secondary hematopoietic tissues and proceeds, in part, through the cell cycle regulator myca (c-myc). Our results support a general paradigm, in which early signaling events, including Wnt, direct later HSPC developmental processes.


PLOS ONE | 2018

Zebrafish snai2 mutants fail to phenocopy morphant phenotypes

Cara Bickers; Sophia D. Española; Stephanie Grainger; Claire Pouget; David Traver

Snail2 is a zinc-finger transcription factor best known to repress expression of genes encoding cell adherence proteins to facilitate induction of the epithelial-to-mesenchymal transition. While this role has been best documented in the developmental migration of the neural crest and mesoderm, here we expand on previously reported preliminary findings that morpholino knock-down of snai2 impairs the generation of hematopoietic stem cells (HSCs) during zebrafish development. We demonstrate that snai2 morphants fail to initiate HSC specification and show defects in the somitic niche of migrating HSC precursors. These defects include a reduction in sclerotome markers as well as in the Notch ligands dlc and dld, which are known to be essential components of HSC specification. Accordingly, enforced expression of the Notch1-intracellular domain was capable of rescuing HSC specification in snai2 morphants. To parallel our approach, we obtained two mutant alleles of snai2. In contrast to the morphants, homozygous mutant embryos displayed no defects in HSC specification or in sclerotome development, and mutant fish survive into adulthood. However, when these homozygous mutants were injected with snai2 morpholino, HSCs were improperly specified. In summary, our morpholino data support a role for Snai2 in HSC development, whereas our mutant data suggest that Snai2 is dispensable for this process. Together, these findings further support the need for careful consideration of both morpholino and mutant phenotypes in studies of gene function.

Collaboration


Dive into the Claire Pouget's collaboration.

Top Co-Authors

Avatar

David Traver

University of California

View shared research outputs
Top Co-Authors

Avatar

Isao Kobayashi

University of California

View shared research outputs
Top Co-Authors

Avatar

Albert D. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emerald Butko

University of California

View shared research outputs
Top Co-Authors

Avatar

Jenna Richter

University of California

View shared research outputs
Top Co-Authors

Avatar

Wilson Clements

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yoonsung Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge