Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilson Clements is active.

Publication


Featured researches published by Wilson Clements.


Nature | 2011

A somitic Wnt16/Notch pathway specifies haematopoietic stem cells.

Wilson Clements; Albert D. Kim; Karen G. Ong; John C. Moore; Nathan D. Lawson; David Traver

Haematopoietic stem cells (HSCs) are a self-renewing population of cells that continuously replenish all blood and immune cells during the lifetime of an individual. HSCs are used clinically to treat a wide array of diseases, including acute leukaemias and congenital blood disorders, but obtaining suitable numbers of cells and finding immune-compatible donors remain serious problems. These difficulties have led to an interest in the conversion of embryonic stem cells or induced pluripotent stem cells into HSCs, which is not possible using current methodologies. To accomplish this goal, it is critical to understand the native mechanisms involved in the specification of HSCs during embryonic development. Here we demonstrate in zebrafish that Wnt16 controls a novel genetic regulatory network required for HSC specification. Non-canonical signalling by Wnt16 is required for somitic expression of the Notch ligands deltaC (dlc) and deltaD (dld), and these ligands are, in turn, required for the establishment of definitive haematopoiesis. Notch signalling downstream of Dlc and Dld is earlier than, and distinct from, known cell-autonomous requirements for Notch, strongly suggesting that novel Notch-dependent relay signal(s) induce the first HSCs in parallel to other established pathways. Our results demonstrate that somite-specific gene expression is required for the production of haemogenic endothelium.


Nature Reviews Immunology | 2013

Signalling pathways that control vertebrate haematopoietic stem cell specification.

Wilson Clements; David Traver

Haematopoietic stem cells (HSCs) are tissue-specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Clinically, HSCs form the foundation of transplantation-based therapies for leukaemias and congenital blood disorders. Researchers have long been interested in understanding the normal signalling mechanisms that specify HSCs in the embryo, in part because recapitulating these requirements in vitro might provide a means to generate immune-compatible HSCs for transplantation. Recent embryological work has demonstrated the existence of previously unknown signalling requirements. Moreover, it is now clear that gene expression in the nearby somite is integrally involved in regulating the transition of the embryonic endothelium to a haemogenic fate. Here, we review current knowledge of the intraembryonic signals required for the specification of HSCs in vertebrates.


The EMBO Journal | 2014

Discrete Notch signaling requirements in the specification of hematopoietic stem cells

Albert D. Kim; Chase Melick; Wilson Clements; David L. Stachura; Martin Distel; Daniela Panáková; Calum A. MacRae; Lindsey Mork; J. Gage Crump; David Traver

Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non‐cell‐autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.


Development | 2015

Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo

Emerald Butko; Martin Distel; Claire Pouget; Bart Weijts; Isao Kobayashi; Kevin Ng; Christian Mosimann; Fabienne E. Poulain; Adam D. McPherson; Chih-Wen Ni; David L. Stachura; Natasha Del Cid; Raquel Espín-Palazón; Nathan D. Lawson; Richard I. Dorsky; Wilson Clements; David Traver

The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system. Highlighted article: Gata2b marks a distinct population of embryonic endothelial cells that gives rise to hematopoietic stem cells and is required for the hemogenic potential of these cells.


Developmental Dynamics | 2009

Zebrafish wnt3 is expressed in developing neural tissue

Wilson Clements; Karen G. Ong; David Traver

Wnt signaling regulates embryonic patterning and controls stem cell homeostasis, while aberrant Wnt activity is associated with disease. One Wnt family member, Wnt3, is required in mouse for specification of mesoderm, and later regulates neural patterning, apical ectodermal ridge formation, and hair growth. We have identified and performed preliminary characterization of the zebrafish wnt3 gene. wnt3 is expressed in the developing tailbud and neural tissue including the zona limitans intrathalamica (ZLI), optic tectum, midbrain‐hindbrain boundary, and dorsal hindbrain and spinal cord. Expression in these regions suggests that Wnt3 participates in processes such as forebrain compartmentalization and regulation of tectal wiring topography by retinal ganglia axons. Surprisingly, wnt3 expression is not detectable during mesoderm specification, making it unlikely that Wnt3 regulates this process in zebrafish. This lack of early expression should make it possible to study later Wnt3‐regulated patterning events, such as neural patterning, by knockdown studies in zebrafish. Developmental Dynamics 238:1768–1795, 2009.


Nature Communications | 2014

FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling

Yoonsung Lee; Jennifer E. Manegold; Albert D. Kim; Claire Pouget; David L. Stachura; Wilson Clements; David Traver

Hematopoietic stem cells (HSCs) derive from hemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to hematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signaling in HSC emergence. This requirement is non-cell-autonomous, and acts within the somite to bridge the Wnt and Notch signaling pathways. We previously demonstrated that Wnt16 regulates the somitic expression of two Notch ligands, deltaC (dlc) and deltaD (dld), whose combined function is required for HSC fate. How Wnt16 connects to Notch function has remained an open question. Our current studies demonstrate that FGF signaling, via FGF receptor 4 (Fgfr4), mediates a signal transduction pathway between Wnt16 and Dlc, but not Dld, to regulate HSC specification. Our findings demonstrate that FGF signaling acts as a key molecular relay within the developmental HSC niche to instruct HSC fate.


Nature Cell Biology | 2017

Pdgf signalling guides neural crest contribution to the haematopoietic stem cell specification niche

Erich Damm; Wilson Clements

Haematopoietic stem cells (HSCs) support maintenance of the haematopoietic and immune systems throughout the life of vertebrates, and are the therapeutic component of bone marrow transplants. Understanding native specification of HSCs, to uncover key signals that might help improve in vitro directed differentiation protocols, has been a long-standing biomedical goal. The current impossibility of specifying true HSCs in vitro suggests that key signals remain unknown. We speculated that such signals might be presented by surrounding ‘niche’ cells, but no such cells have been defined. Here we demonstrate in zebrafish, that trunk neural crest (NC) physically associate with HSC precursors in the dorsal aorta (DA) just prior to initiation of the definitive haematopoietic program. Preventing association of the NC with the DA leads to loss of HSCs. Our results define NC as key cellular components of the HSC specification niche that can be profiled to identify unknown HSC specification signals.


Development | 2017

R-spondin-1 is required for specification of hematopoietic stem cells through Wnt16 and Vegfa signaling pathways

Jamie Genthe; Wilson Clements

Hematopoietic stem cells (HSCs) are the therapeutic component of bone marrow transplants, but finding immune-compatible donors limits treatment availability and efficacy. Recapitulation of endogenous specification during development is a promising approach to directing HSC specification in vitro, but current protocols are not capable of generating authentic HSCs with high efficiency. Across phyla, HSCs arise from hemogenic endothelium in the ventral floor of the dorsal aorta concurrent with arteriovenous specification and intersegmental vessel (ISV) sprouting, processes regulated by Notch and Wnt. We hypothesized that coordination of HSC specification with vessel patterning might involve modulatory regulatory factors such as R-spondin 1 (Rspo1), an extracellular protein that enhances β-catenin-dependent Wnt signaling and has previously been shown to regulate ISV patterning. We find that Rspo1 is required for HSC specification through control of parallel signaling pathways controlling HSC specification: Wnt16/DeltaC/DeltaD and Vegfa/Tgfβ1. Our results define Rspo1 as a key upstream regulator of two crucial pathways necessary for HSC specification. Summary: R-spondin 1, a Wnt co-factor, regulates the expression of components of the parallel pathways Wnt16/DeltaC/DeltaD and Vegfa/Tgfβ1, required for specification of hematopoietic stem cells.


Blood | 2012

Fish pharming: zebrafish antileukemia screening

Wilson Clements; David Traver

In this issue of Blood , Ridges et al report the first successful use of a medium throughput zebrafish screen to identify novel compounds effective against human leukemia.[1][1] The zebrafish, historically a robust developmental patterning model, has in recent years begun to show its strength as a


Experimental Hematology | 2018

Gpr182 is a Novel Regulator of Hematopoietic Stem Cell Specification during Zebrafish Development

Erich Damm; Wilson Clements

Collaboration


Dive into the Wilson Clements's collaboration.

Top Co-Authors

Avatar

David Traver

University of California

View shared research outputs
Top Co-Authors

Avatar

Albert D. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erich Damm

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jamie Genthe

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Chase Melick

University of California

View shared research outputs
Top Co-Authors

Avatar

Clair M. Kelley

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Karen G. Ong

University of California

View shared research outputs
Top Co-Authors

Avatar

Martin Distel

University of California

View shared research outputs
Top Co-Authors

Avatar

Sarah Rothschild

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge