Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Prigent-Combaret is active.

Publication


Featured researches published by Claire Prigent-Combaret.


Plant and Soil | 2009

Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms

Alan E. Richardson; J. M. Barea; Ann McNeill; Claire Prigent-Combaret

The rhizosphere is a complex environment where roots interact with physical, chemical and biological properties of soil. Structural and functional characteristics of roots contribute to rhizosphere processes and both have significant influence on the capacity of roots to acquire nutrients. Roots also interact extensively with soil microorganisms which further impact on plant nutrition either directly, by influencing nutrient availability and uptake, or indirectly through plant (root) growth promotion. In this paper, features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen. The interaction of roots with soil microorganisms, in particular with mycorrhizal fungi and non-symbiotic plant growth promoting rhizobacteria, is also considered in relation to nutrient availability and through the mechanisms that are associated with plant growth promotion.


Journal of Bacteriology | 2001

Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli via Regulation of the csgD Gene

Claire Prigent-Combaret; Eva Brombacher; Olivier Vidal; Arnaud Ambert; Philippe Lejeune; Paolo Landini; Corinne Dorel

The Escherichia coli OmpR/EnvZ two-component regulatory system, which senses environmental osmolarity, also regulates biofilm formation. Up mutations in the ompR gene, such as the ompR234 mutation, stimulate laboratory strains of E. coli to grow as a biofilm community rather than in a planktonic state. In this report, we show that the OmpR234 protein promotes biofilm formation by binding the csgD promoter region and stimulating its transcription. The csgD gene encodes the transcription regulator CsgD, which in turn activates transcription of the csgBA operon encoding curli, extracellular structures involved in bacterial adhesion. Consistent with the role of the ompR gene as part of an osmolarity-sensing regulatory system, we also show that the formation of biofilm by E. coli is inhibited by increasing osmolarity in the growth medium. The ompR234 mutation counteracts adhesion inhibition by high medium osmolarity; we provide evidence that the ompR234 mutation promotes biofilm formation by strongly increasing the initial adhesion of bacteria to an abiotic surface. This increase in initial adhesion is stationary phase dependent, but it is negatively regulated by the stationary-phase-specific sigma factor RpoS. We propose that this negative regulation takes place via rpoS-dependent transcription of the transcription regulator cpxR; cpxR-mediated repression of csgB and csgD promoters is also triggered by osmolarity and by curli overproduction, in a feedback regulation loop.


Frontiers in Plant Science | 2013

Plant growth-promoting rhizobacteria and root system functioning

Jordan Vacheron; Guilhem Desbrosses; Marie-Lara Bouffaud; Bruno Touraine; Yvan Moënne-Loccoz; Daniel Muller; Laurent Legendre; Florence Wisniewski-Dyé; Claire Prigent-Combaret

The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.


PLOS Genetics | 2011

Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments

Florence Wisniewski-Dyé; Kirill Borziak; Gurusahai Khalsa-Moyers; Gladys Alexandre; Leonid O. Sukharnikov; Kristin Wuichet; Gregory B. Hurst; W. Hayes McDonald; Jon S. Robertson; Valérie Barbe; Alexandra Calteau; Zoé Rouy; Sophie Mangenot; Claire Prigent-Combaret; Philippe Normand; Mickaël Boyer; Patricia Siguier; Yves Dessaux; Claudine Elmerich; Guy Condemine; Ganisan Krishnen; Ivan R. Kennedy; Andrew H. Paterson; Víctor González; Patrick Mavingui; Igor B. Zhulin

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Letters in Applied Microbiology | 2009

Pseudomonas fluorescens and closely‐related fluorescent pseudomonads as biocontrol agents of soil‐borne phytopathogens

Olivier Couillerot; Claire Prigent-Combaret; Jesús Caballero-Mellado; Yvan Moënne-Loccoz

Many strains of Pseudomonas fluorescens show potential for biological control of phytopathogens especially root pathogens. In taxonomic terms, several of them are indeed P. fluorescens sensu stricto, while others belong in fact to neighbouring species of the ‘P. fluorescens’ complex or to ill‐defined related species within the fluorescent Pseudomonas spp. These bacteria have become prominent models for rhizosphere ecological studies and analysis of bacterial secondary metabolism, and in recent years knowledge on their plant‐beneficial traits has been considerably enhanced by widening the focus beyond the case of phytopathogen‐directed antagonism. Current genomic analyses of rhizosphere competence and biocontrol traits will likely lead to the development of novel tools for effective management of indigenous and inoculated P. fluorescens biocontrol agents and a better exploitation of their plant‐beneficial properties for sustainable agriculture.


Molecular Plant-microbe Interactions | 2011

The Pseudomonas Secondary Metabolite 2,4-Diacetylphloroglucinol Is a Signal Inducing Rhizoplane Expression of Azospirillum Genes Involved in Plant-Growth Promotion

Emeline Combes-Meynet; Joël F. Pothier; Yvan Moënne-Loccoz; Claire Prigent-Combaret

During evolution, plants have become associated with guilds of plant-growth-promoting rhizobacteria (PGPR), which raises the possibility that individual PGPR populations may have developed mechanisms to cointeract with one another on plant roots. We hypothesize that this has resulted in signaling phenomena between different types of PGPR colonizing the same roots. Here, the objective was to determine whether the Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol (DAPG) can act as a signal on Azospirillum PGPR and enhance the phytostimulation effects of the latter. On roots, the DAPG-producing Pseudomonas fluorescens F113 strain but not its phl-negative mutant enhanced the phytostimulatory effect of Azospirillum brasilense Sp245-Rif on wheat. Accordingly, DAPG enhanced Sp245-Rif traits involved in root colonization (cell motility, biofilm formation, and poly-β-hydroxybutyrate production) and phytostimulation (auxin production). A differential fluorescence induction promoter-trapping approach based on flow cytometry was then used to identify Sp245-Rif genes upregulated by DAPG. DAPG enhanced expression of a wide range of Sp245-Rif genes, including genes involved in phytostimulation. Four of them (i.e., ppdC, flgE, nirK, and nifX-nifB) tended to be upregulated on roots in the presence of P. fluorescens F113 compared with its phl-negative mutant. Our results indicate that DAPG can act as a signal by which some beneficial pseudomonads may stimulate plant-beneficial activities of Azospirillum PGPR.


Biology and Fertility of Soils | 2006

Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth

M. Sajjad Mirza; Samina Mehnaz; Philippe Normand; Claire Prigent-Combaret; Yvan Moënne-Loccoz; René Bally; Kauser A. Malik

Nitrogen-fixing plant growth-promoting rhizobacteria (PGPR) from the genus Pseudomonas have received little attention so far. In the present study, a nitrogen-fixing phytohormone-producing bacterial isolate from kallar grass (strain K1) was identified as Pseudomonas sp. by rrs (16S ribosomal RNA gene) sequence analysis. rrs identity level was high with an uncharacterized marine bacterium (99%), Pseudomonas sp. PCP2 (98%), uncultured bacteria (98%), and Pseudomonas alcaligenes (97%). Partial nifH gene amplified from strain K1 showed 93% and 91% sequence similarities to those of Azotobacter chroococcum and Pseudomonas stutzeri, respectively. The effect of Pseudomonas strain K1 on rice varieties Super Basmati and Basmati 385 was compared with those of three non-Pseudomonas nitrogen-fixing PGPR (Azospirillum brasilense strain Wb3, Azospirillum lipoferum strain N4 and Zoogloea strain Ky1) used as single-strain inoculants. Pseudomonas sp. K1 was detected in the rhizosphere of inoculated plants by enrichment culture in nitrogen-free growth medium, which was followed by observation under the microscope as well as by PCR using a rrs-specific primer. For both rice varieties, an increase in shoot biomass and/or grain yield over that of noninoculated control plants was recorded in each inoculated treatment. The effect of Pseudomonas strain K1 on grain yield was comparable to those of A. brasilense Wb3 and Zoogloea sp. Ky1 for both rice varieties. These results show that nitrogen-fixing pseudomonads deserve attention as potential PGPR inoculants for rice.


Environmental Microbiology Reports | 2009

Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species.

Simon H. Miller; Patrick Browne; Claire Prigent-Combaret; Emeline Combes-Meynet; John P. Morrissey; Fergal O'Gara

Mobilization of insoluble soil inorganic phosphate by plant beneficial rhizobacteria is a trait of key importance to the development of microbial biofertilizers. In this study, the ability of several Pseudomonas spp. to solubilize Ca3 (PO4 )2 was compared. While all Pseudomonas spp. were found to facilitate a decrease in pH and solubilize inorganic phosphate by the production of extracellular organic acids, strains varied by producing either gluconic or 2-ketogluconic acid. Furthermore, comparison between the Pseudomonas spp. of the genes involved in oxidative glucose metabolism revealed variations in genomic organization. To further investigate the genetic mechanisms involved in inorganic phosphate solubilization by Pseudomonas spp., a transposon mutant library of P. fluorescens F113 was screened for mutants with reduced Ca3 (PO4 )2 solubilization ability. Mutations in the gcd and pqqE genes greatly reduced the solubilization ability, whereas mutations in the pqqB gene only moderately reduced this ability. The combination of biochemical analysis and genomic comparisons revealed that alterations in the pqq biosynthetic genes, and the presence/absence of the gluconate dehydrogenase (gad) gene, fundamentally affect phosphate solublization in strains of P. fluorescens.


FEMS Microbiology Ecology | 2008

Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria.

Claire Prigent-Combaret; Didier Blaha; Joël F. Pothier; Ludovic Vial; Marie-Andrée Poirier; Florence Wisniewski-Dyé; Yvan Moënne-Loccoz

The phytostimulatory alphaproteobacterium Azospirillum lipoferum 4B exhibits the plant-beneficial gene acdS, which enables deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Here, we show that acdS is in the vicinity of acdR, a homolog to leucine-responsive regulator lrp, in A. lipoferum 4B and most other acdS+ Proteobacteria. Unlike in Beta- and Gammaproteobacteria, acdS (and acdR) is preferentially located on symbiotic islands and plasmids in Alphaproteobacteria. In A. lipoferum 4B, acdS was mapped on a 750-kb plasmid that is lost during phenotypic variation, whereas other phytobeneficial genes such as nifH (associative nitrogen fixation) are maintained. In Proteobacteria, the phylogenies of acdR and acdS were largely but not totally congruent, despite physical proximity of the genes, regardless of whether DNA or deduced protein sequences were used. Potential Lrp, cAMP receptor protein (CRP) and fumarate-nitrate reduction regulator (FNR) binding sites were evidenced in the acdS promoter regions of strain 4B and most of 46 other acdS+ Proteobacteria. Indeed, transcriptional and enzymatic analyses done in vitro pointed to the involvement of Lrp- and FNR-like transcriptional up-regulation of ACC deaminase activity in A. lipoferum 4B. This is the first synteny, phylogenetic, and functional analysis of factors modulating acdS expression in Azospirillum plant growth-promoting rhizobacterium.


Research in Microbiology | 2012

Which specificity in cooperation between phytostimulating rhizobacteria and plants

Benoît Drogue; Hugo Doré; Stéphanie Borland; Florence Wisniewski-Dyé; Claire Prigent-Combaret

Plant growth-promoting rhizobacteria (PGPR) are found in association with a large range of host plants. Although the subject of plant host specificity has been well studied in parasitic and mutualistic interactions, the question of whether phytostimulating rhizobacteria efficiently interact only with a specific host remains poorly discussed. This review presents elements suggesting the existence of specificity in three-step establishment of associative symbiosis between phytostimulating rhizobacteria and plants: bacterial attraction by the host plant, bacterial colonization of roots, and functioning of associative symbiosis.

Collaboration


Dive into the Claire Prigent-Combaret's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hervé Sanguin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Lejeune

Institut national des sciences Appliquées de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge