Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Wisniewski-Dyé is active.

Publication


Featured researches published by Florence Wisniewski-Dyé.


Frontiers in Plant Science | 2013

Plant growth-promoting rhizobacteria and root system functioning

Jordan Vacheron; Guilhem Desbrosses; Marie-Lara Bouffaud; Bruno Touraine; Yvan Moënne-Loccoz; Daniel Muller; Laurent Legendre; Florence Wisniewski-Dyé; Claire Prigent-Combaret

The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.


FEMS Microbiology Ecology | 2009

Cell–cell signalling in bacteria: not simply a matter of quorum

Mickaël Boyer; Florence Wisniewski-Dyé

Bacterial signalling known as quorum sensing (QS) relies on the synthesis of autoinducing signals throughout growth; when a threshold concentration is reached, these signals interact with a transcriptional regulator, allowing the expression of specific genes at a high cell density. One of the most studied intraspecies signalling is based on the use of N-acyl-homoserine lactones (AHL). Many factors other than cell density were shown to affect AHL accumulation and interfere with the QS signalling process. At the cellular level, the genetic determinants of QS are integrated in a complex regulatory network, including QS cascades and various transcriptional and post-transcriptional regulators that affect the synthesis of the AHL signal. In complex environments where bacteria exist, AHL do not accumulate at a constant rate; the diffusion and perception of the AHL signal outside bacterial cells can be compromised by abiotic environmental factors, by members of the bacterial community such as AHL-degrading bacteria and also by compounds produced by eukaryotes acting as an AHL mimic or inhibitor. This review aims to present all factors interfering with the AHL-mediated signalling process, at the levels of signal production, diffusion and perception.


PLOS Genetics | 2011

Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments

Florence Wisniewski-Dyé; Kirill Borziak; Gurusahai Khalsa-Moyers; Gladys Alexandre; Leonid O. Sukharnikov; Kristin Wuichet; Gregory B. Hurst; W. Hayes McDonald; Jon S. Robertson; Valérie Barbe; Alexandra Calteau; Zoé Rouy; Sophie Mangenot; Claire Prigent-Combaret; Philippe Normand; Mickaël Boyer; Patricia Siguier; Yves Dessaux; Claudine Elmerich; Guy Condemine; Ganisan Krishnen; Ivan R. Kennedy; Andrew H. Paterson; Víctor González; Patrick Mavingui; Igor B. Zhulin

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Quorum-sensing in Rhizobium

Florence Wisniewski-Dyé; J. Allan Downie

Quorum-sensing signals are found in many species of legume-nodulating rhizobia. In a well-characterized strain of R. leguminosarum biovar viciae, a variety of autoinducers are synthesised, and all have been identified as N-acyl-homoserine lactones. One of these N-acyl-homoserine lactones, is N-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone, previously known as small bacteriocin, which inhibits the growth of several R. leguminosarum strains. The cinRI locus is responsible for the production of small bacteriocin. CinR induces cinI in response to the AHL made by CinI, thus forming a positive autoregulatory induction loop. A complex cascade of quorum-sensing loops was characterized, in which the cinIR locus appears to be the master control for three other AHL-dependent quorum-sensing control systems. These systems include the raiI/raiR, traI/triR and rhiI/rhiR. Other rhizobial strains appear to share some of these quorum sensing loci, but not all loci are found in all strains. Small bacteriocin along with the other N-acyl-homoserine lactones produced by these three AHL-based control systems regulate (i) growth inhibition of sensitive strains, (ii) transfer of the symbiotic plasmid pRL1JI, and (iii) expression of the rhizosphere-expressed (rhi) genes that influence nodulation. Some of the genes regulated by these systems have been identified. While the functions of some, such as the trb operon regulated by triR are clear, several of the regulated genes have no homologues of known function. It is anticipated that several other genes regulated by these systems have yet to be identified. Therefore, despite the regulation of one of the most complex quorum-sensing cascade being understood, several of the functions regulated by the quorum-sensing genes remain to be elucidated.


FEMS Microbiology Ecology | 2008

Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria.

Claire Prigent-Combaret; Didier Blaha; Joël F. Pothier; Ludovic Vial; Marie-Andrée Poirier; Florence Wisniewski-Dyé; Yvan Moënne-Loccoz

The phytostimulatory alphaproteobacterium Azospirillum lipoferum 4B exhibits the plant-beneficial gene acdS, which enables deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Here, we show that acdS is in the vicinity of acdR, a homolog to leucine-responsive regulator lrp, in A. lipoferum 4B and most other acdS+ Proteobacteria. Unlike in Beta- and Gammaproteobacteria, acdS (and acdR) is preferentially located on symbiotic islands and plasmids in Alphaproteobacteria. In A. lipoferum 4B, acdS was mapped on a 750-kb plasmid that is lost during phenotypic variation, whereas other phytobeneficial genes such as nifH (associative nitrogen fixation) are maintained. In Proteobacteria, the phylogenies of acdR and acdS were largely but not totally congruent, despite physical proximity of the genes, regardless of whether DNA or deduced protein sequences were used. Potential Lrp, cAMP receptor protein (CRP) and fumarate-nitrate reduction regulator (FNR) binding sites were evidenced in the acdS promoter regions of strain 4B and most of 46 other acdS+ Proteobacteria. Indeed, transcriptional and enzymatic analyses done in vitro pointed to the involvement of Lrp- and FNR-like transcriptional up-regulation of ACC deaminase activity in A. lipoferum 4B. This is the first synteny, phylogenetic, and functional analysis of factors modulating acdS expression in Azospirillum plant growth-promoting rhizobacterium.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2008

Phase and antigenic variation mediated by genome modifications

Florence Wisniewski-Dyé; Ludovic Vial

Phase and antigenic variation is used by several bacterial species to generate intra-population diversity that increases bacterial fitness and is important in niche adaptation, or to escape host defences. By this adaptive process, bacteria undergo frequent and usually reversible phenotypic changes resulting from genetic or epigenetic alterations at specific genetic loci. Phase variation or phenotypic switch allows the expression of a given phenotype to be switched ON or OFF. Antigenic variation refers to the expression of a number of alternative forms of an antigen on the cell surface, and at a molecular level, shares common features with phase variation mechanisms. This review will focus on phase and antigenic variation mechanisms implying genome modifications, with an emphasis on the diversity of phenotypes regulated by these mechanisms, and the ecological relevance of variant appearance within a given population.


Research in Microbiology | 2012

Which specificity in cooperation between phytostimulating rhizobacteria and plants

Benoît Drogue; Hugo Doré; Stéphanie Borland; Florence Wisniewski-Dyé; Claire Prigent-Combaret

Plant growth-promoting rhizobacteria (PGPR) are found in association with a large range of host plants. Although the subject of plant host specificity has been well studied in parasitic and mutualistic interactions, the question of whether phytostimulating rhizobacteria efficiently interact only with a specific host remains poorly discussed. This review presents elements suggesting the existence of specificity in three-step establishment of associative symbiosis between phytostimulating rhizobacteria and plants: bacterial attraction by the host plant, bacterial colonization of roots, and functioning of associative symbiosis.


Journal of Bacteriology | 2006

Phase Variation and Genomic Architecture Changes in Azospirillum

Ludovic Vial; Céline Lavire; Patrick Mavingui; Didier Blaha; Jacqueline Haurat; Yvan Moënne-Loccoz; René Bally; Florence Wisniewski-Dyé

The plant growth-promoting rhizobacterium Azospirillum lipoferum 4B generates in vitro at high frequency a stable nonswimming phase variant designated 4V(I), which is distinguishable from the wild type by the differential absorption of dyes. The frequency of variants generated by a recA mutant of A. lipoferum 4B was increased up to 10-fold. The pleiotropic modifications characteristic of the phase variant are well documented, but the molecular processes involved are unknown. Here, the objective was to assess whether genomic rearrangements take place during phase variation of strain 4B. The random amplified polymorphic DNA (RAPD) profiles of strains 4B and 4V(I) differed. RAPD fragments observed only with the wild type were cloned, and three cosmids carrying the corresponding fragments were isolated. The three cosmids hybridized with a 750-kb plasmid and pulse-field gel electrophoresis analysis revealed that this replicon was missing in the 4V(I) genome. The same rearrangements took place during phase variation of 4BrecA. Large-scale genomic rearrangements during phase variation were demonstrated for two additional strains. In Azospirillum brasilense WN1, generation of stable variants was correlated with the disappearance of a replicon of 260 kb. For Azospirillum irakense KBC1, the variant was not stable and coincided with the formation of a new replicon, whereas the revertant recovered the parental genomic architecture. This study shows large-scale genomic rearrangements in Azospirillum strains and correlates them with phase variation.


Phytochemistry | 2013

Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association

Amel Chamam; Hervé Sanguin; Floriant Bellvert; Guillaume Meiffren; Gilles Comte; Florence Wisniewski-Dyé; Cédric Bertrand; Claire Prigent-Combaret

Azospirillum is a plant growth-promoting rhizobacterium (PGPR) able to enhance growth and yield of cereals such as rice, maize and wheat. The growth-promoting ability of some Azospirillum strains appears to be highly specific to certain plant species and cultivars. In order to ascertain the specificity of the associative symbiosis between rice and Azospirillum, the physiological response of two rice cultivars, Nipponbare and Cigalon, inoculated with two rice-associated Azospirillum was analyzed at two levels: plant growth response and plant secondary metabolic response. Each strain of Azospirillum (Azospirillum lipoferum 4B isolated from Cigalon and Azospirillum sp. B510 isolated from Nipponbare) preferentially increased growth of the cultivar from which it was isolated. This specific effect is not related to a defect in colonization of host cultivar as each strain colonizes effectively both rice cultivars, either at the rhizoplane (for 4B and B510) and inside the roots (for B510). The metabolic profiling approach showed that, in response to PGPR inoculation, profiles of rice secondary metabolites were modified, with phenolic compounds such as flavonoids and hydroxycinnamic derivatives being the main metabolites affected. Moreover, plant metabolic changes differed according to Azospirillum strain×cultivar combinations; indeed, 4B induced major secondary metabolic profile modifications only on Cigalon roots, while B510, probably due to its endophytic feature, induced metabolic variations on shoots and roots of both cultivars, triggering a systemic response. Plant secondary metabolite profiling thereby evidences the specific interaction between an Azospirillum strain and its original host cultivar.


Research in Microbiology | 2008

A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum

Mickaël Boyer; René Bally; Sandrine Perrotto; Clémence Chaintreuil; Florence Wisniewski-Dyé

A quorum-quenching approach was exploited in order to identify functions regulated by quorum-sensing (QS) in the plant growth-promoting bacterium Azospirillum lipoferum. The AttM lactonase from Agrobacterium tumefaciens was shown to enzymatically inactivate N-acyl homoserine lactones (AHLs) produced by two A. lipoferum strains. The targeted analysis of several phenotypes revealed that in strain B518, a rice endophyte, AHL inactivation abolished pectinase activity, increased siderophore synthesis and reduced indoleacetic acid production (in stationary phase) but no effect was observed on cellulase activity or on swimming and swarming motilities. None of the tested phenotypes appeared to be under QS regulation in strain TVV3 isolated from the rice rhizosphere. Moreover, AHL inactivation had no deleterious effect on the phytostimulatory effect of the two strains in vitro. A global proteomic approach revealed little modification of protein patterns when comparing attM-expressing TVV3 and the wild-type strain, but numerous proteins appeared to be regulated by the AHL-mediated QS system in strain B518. Several proteins identified by MS-MS analysis were revealed to be implicated in transport (such as OmaA) and chemotaxis (ChvE). Altogether, the results indicate that in A. lipoferum, QS regulation is strain-specific and is dedicated to regulating functions linked to rhizosphere competence and adaptation to plant roots.

Collaboration


Dive into the Florence Wisniewski-Dyé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hervé Sanguin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge