Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire R. Hurley is active.

Publication


Featured researches published by Claire R. Hurley.


Microbial Cell Factories | 2012

Influence of fermentation conditions on the surface properties and adhesion of Lactobacillus rhamnosus GG.

Gurjot Deepika; Esther Karunakaran; Claire R. Hurley; Catherine A. Biggs; Dimitris Charalampopoulos

BackgroundThe surface properties of probiotic bacteria influence to a large extent their interactions within the gut ecosystem. There is limited amount of information on the effect of the production process on the surface properties of probiotic lactobacilli in relation to the mechanisms of their adhesion to the gastrointestinal mucosa. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG.ResultsThe cells were grown at pH 5, 5.5, 6 (temperature 37°C) and at pH 6.5 (temperature 25°C, 30°C and 37°C), and their surfaces analysed by X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectroscopy (FT-IR) and gel-based proteomics. The results indicated that for all the fermentation conditions, with the exception of pH 5, a higher nitrogen to carbon ratio and a lower phosphate content was observed at the surface of the bacteria, which resulted in a lower surface hydrophobicity and reduced adhesion levels to Caco-2 cells as compared to the control fermentation (pH 6.5, 37°C). A number of adhesive proteins, which have been suggested in previous published works to take part in the adhesion of bacteria to the human gastrointestinal tract, were identified by proteomic analysis, with no significant differences between samples however.ConclusionsThe temperature and the pH of the fermentation influenced the surface composition, hydrophobicity and the levels of adhesion of L. rhamnosus GG to Caco-2 cells. It was deduced from the data that a protein rich surface reduced the adhesion ability of the cells.


ACS Applied Materials & Interfaces | 2009

Quantitative investigation of the photodegradation of polyethylene terephthalate film by friction force microscopy, contact-angle goniometry, and X-ray photoelectron spectroscopy.

Claire R. Hurley; Graham J. Leggett

Studies of the UV-induced photodegradation of poly(ethylene terephthalate) (PET) have been carried out using contact-angle goniometry, X-ray photoelectron spectroscopy (XPS), and friction force microscopy (FFM). The advancing contact angle of water, theta, decreased following exposure of free-standing PET films to UV light. Measurements of surface friction by FFM showed that the coefficient of friction mu increased as the degradation proceeded, reaching a limiting value after ca 200 min, in agreement with the contact angle data. Using a modified form of the Cassie equation, a quantitative analysis of the extent of modification could be carried out. There was a very close correlation between the coefficient of friction determined by FFM and the value of cos theta. XPS provided more detailed information on surface bonding that also correlated closely with the FFM data. Although FFM provides quantitative data on surface modification with nanometer-scale spatial resolution, it does not provide detailed structural information such as is provided by XPS. The oxygen content at the surface was found to increase as photo-generated radicals within the PET reacted with atmospheric oxygen. Increases in both ester and carbonyl contributions within XPS data accompanied this increase. It was concluded that the photodegradation process follows mainly Norrish type I reaction pathways, following previous work by Fechine et al and Grosstete et al.


Langmuir | 2010

Fabrication of submicrometer biomolecular patterns by near-field exposure of plasma-polymerized tetraglyme films.

Claire R. Hurley; Robert E. Ducker; Graham J. Leggett; Buddy D. Ratner

Plasma-polymerized tetraglyme films (PP4G) have been modified by exposure to ultraviolet (UV) light from a frequency-doubled argon ion laser (244 nm) and characterized using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS data indicated that the ether component of the C 1s spectrum declined after UV exposure, while components due to carbonyl and carboxylate groups increased. The film was physically eroded by UV exposure: after 100 s the rate of erosion reached a steady state of 0.05 nm s(-1). The coefficient of friction, measured by friction force microscopy (FFM), increased substantially following exposure to UV light, reaching a limiting value after 10 min exposure, in agreement with the time taken for the ether and carboxylate components in the C 1s spectrum to reach a limiting value. Samples exposed to UV light through a mask yielded excellent frictional contrast. When immersed in solutions of proteins and protein-functionalized nanoparticles labeled with fluorescent markers, selective adsorption occurred onto the exposed regions of these samples. Excellent fluorescence contrast was obtained when samples were characterized by confocal microscopy, indicating that the exposed areas become adhesive toward proteins, while the masked areas remain resistant to adsorption. Submicrometer structures have been formed by exposing PP4G films to UV light using a scanning near-field optical microscope coupled to a UV laser. Structures as small as 338 nm have been formed and used to immobilize proteins. Again, excellent contrast difference was observed when labeled proteins were adsorbed and characterized by confocal microscopy, suggesting a simple and effective route to the formation of submicrometer scale protein patterns.


Langmuir | 2015

Fabrication of Two-Component, Brush-on-Brush Topographical Microstructures by Combination of Atom-Transfer Radical Polymerization with Polymer End-Functionalization and Photopatterning.

Paul Chapman; Robert E. Ducker; Claire R. Hurley; Jamie K. Hobbs; Graham J. Leggett

Poly(oligoethylene glycol methyl ether methacrylate) (POEGMEMA) brushes, grown from silicon oxide surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP), were end-capped by reaction with sodium azide leading to effective termination of polymerization. Reduction of the terminal azide to an amine, followed by derivatization with the reagent of choice, enabled end-functionalization of the polymers. Reaction with bromoisobutryl bromide yielded a terminal bromine atom that could be used as an initiator for ATRP with a second, contrasting monomer (methacrylic acid). Attachment of a nitrophenyl protecting group to the amine facilitated photopatterning: when the sample was exposed to UV light through a mask, the amine was deprotected in exposed regions, enabling selective bromination and the growth of a patterned brush by ATRP. Using this approach, micropatterned pH-responsive poly(methacrylic acid) (PMAA) brushes were grown on a protein resistant planar poly(oligoethylene glycol methyl ether methacrylate) (POEGMEMA) brush. Atomic force microscopy analysis by tapping mode and PeakForce quantitative nanomechanical mapping (QNM) mode allowed topographical verification of the spatially specific secondary brush growth and its stimulus responsiveness. Chemical confirmation of selective polymer growth was achieved by secondary ion mass spectrometry (SIMS).


Langmuir | 2017

Simple, Direct Routes to Polymer Brush Traps and Nanostructures for Studies of Diffusional Transport in Supported Lipid Bilayers

Alexander Johnson; Peng Bao; Claire R. Hurley; Michaël L. Cartron; Stephen D. Evans; C. Neil Hunter; Graham J. Leggett

Patterned poly(oligo ethylene glycol) methyl ether methacrylate (POEGMEMA) brush structures may be formed by using a combination of atom-transfer radical polymerization (ATRP) and UV photopatterning. UV photolysis is used to selectively dechlorinate films of 4-(chloromethyl)phenyltrichlorosilane (CMPTS) adsorbed on silica surfaces, by exposure either through a mask or using a two-beam interferometer. Exposure through a mask yields patterns of carboxylic acid-terminated adsorbates. POEGMEMA may be grown from intact Cl initiators that were masked during exposure. Corrals, traps, and other structures formed in this way enable the patterning of proteins, vesicles, and, following vesicle rupture, supported lipid bilayers (SLBs). Bilayers adsorbed on the carboxylic acid-terminated surfaces formed by C–Cl bond photolysis in CMPTS exhibit high mobility. SLBs do not form on POEGMEMA. Using traps consisting of carboxylic acid-functionalized regions enclosed by POEGMEMA structures, electrophoresis may be observed in lipid bilayers containing a small amount of a fluorescent dye. Segregation of dye at one end of the traps was measured by fluorescence microscopy. The increase in the fluorescence intensity was found to be proportional to the trap length, while the time taken to reach the maximum value was inversely proportional to the trap length, indicating uniform, rapid diffusion in all of the traps. Nanostructured materials were formed using interferometric lithography. Channels were defined by exposure of CMPTS films to maxima in the interferogram, and POEGMEMA walls were formed by ATRP. As for the micrometer-scale patterns, bilayers did not form on the POEGMEMA structures, and high lipid mobilities were measured in the polymer-free regions of the channels.


Macromolecules | 2014

3D Surface Functionalization of Emulsion-Templated Polymeric Foams

Priyalakshmi Viswanathan; David W. Johnson; Claire R. Hurley; Neil R. Cameron; Giuseppe Battaglia


Langmuir | 2006

Influence of the solvent environment on the contact mechanics of tip-sample interactions in friction force microscopy of poly(ethylene terephthalate) films

Claire R. Hurley; Graham J. Leggett


Journal of Polymer Science Part A | 2013

Facile synthesis of polymer–peptide conjugates via direct amino acid coupling chemistry

Gwen F. Chimonides; Arun A. Sohdi; Mohammad R. Khaleghi; Claire R. Hurley; Dave J. Adams; Paul D. Topham


Chemical Science | 2017

Micrometre and nanometre scale patterning of binary polymer brushes, supported lipid bilayers and proteins.

Alexander Johnson; Jeppe Madsen; Paul Chapman; Abdullah Alswieleh; Omed Al-Jaf; Peng Bao; Claire R. Hurley; Michaël L. Cartron; Stephen D. Evans; Jamie K. Hobbs; C. Neil Hunter; Steven P. Armes; Graham J. Leggett


Surface and Interface Analysis | 2013

Vapour‐mediated ion activation for enhanced SIMS imaging

Seetharaman Vaidyanathan; Malinda Salim; Claire R. Hurley; John A. Pugh

Collaboration


Dive into the Claire R. Hurley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Chapman

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge