Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Saraux is active.

Publication


Featured researches published by Claire Saraux.


Nature | 2011

Reliability of flipper-banded penguins as indicators of climate change

Claire Saraux; Céline Le Bohec; Joël M. Durant; Vincent A. Viblanc; Michel Gauthier-Clerc; David Beaune; Young-Hyang Park; Nigel G. Yoccoz; Nils Chr. Stenseth; Yvon Le Maho

In 2007, the Intergovernmental Panel on Climate Change highlighted an urgent need to assess the responses of marine ecosystems to climate change. Because they lie in a high-latitude region, the Southern Ocean ecosystems are expected to be strongly affected by global warming. Using top predators of this highly productive ocean (such as penguins) as integrative indicators may help us assess the impacts of climate change on marine ecosystems. Yet most available information on penguin population dynamics is based on the controversial use of flipper banding. Although some reports have found the effects of flipper bands to be deleterious, some short-term (one-year) studies have concluded otherwise, resulting in the continuation of extensive banding schemes and the use of data sets thus collected to predict climate impact on natural populations. Here we show that banding of free-ranging king penguins (Aptenodytes patagonicus) impairs both survival and reproduction, ultimately affecting population growth rate. Over the course of a 10-year longitudinal study, banded birds produced 39% fewer chicks and had a survival rate 16% lower than non-banded birds, demonstrating a massive long-term impact of banding and thus refuting the assumption that birds will ultimately adapt to being banded. Indeed, banded birds still arrived later for breeding at the study site and had longer foraging trips even after 10u2009years. One of our major findings is that responses of flipper-banded penguins to climate variability (that is, changes in sea surface temperature and in the Southern Oscillation index) differ from those of non-banded birds. We show that only long-term investigations may allow an evaluation of the impact of flipper bands and that every major life-history trait can be affected, calling into question the banding schemes still going on. In addition, our understanding of the effects of climate change on marine ecosystems based on flipper-band data should be reconsidered.


Ecology | 2011

Plasticity in foraging strategies of inshore birds: how Little Penguins maintain body reserves while feeding offspring

Claire Saraux; Sarah M. Robinson-Laverick; Yvon Le Maho; Yan Ropert-Coudert; André Chiaradia

Breeding animals face important time and energy constraints when caring for themselves and their offspring. For long-lived species, life-history theory predicts that parents should favor survival over current reproductive attempts, thus investing more into their own maintenance than the provisioning of their young. In seabirds, provisioning strategies may additionally be influenced by the distance between breeding sites and foraging areas, and offshore and inshore species should thus exhibit different strategies. Here, we examine the provisioning strategies of an inshore seabird using a long-term data set on more than 200 Little Penguins, Eudyptula minor. They alternated between two consecutive long and several short foraging trips all along chick rearing, a strategy almost never observed for inshore animals. Short trips allowed for regular provisioning of the chicks (high feeding frequency and larger meals), whereas long trips were performed when parent body mass was low and enabled them to rebuild their reserves, suggesting that adult body condition may be a key factor in initiating long trips. Inshore seabirds do use dual strategies of alternating short and long trips, but from our data, on a simpler and less flexible way than for offshore birds.


PLOS ONE | 2011

Effects of Individual Pre-Fledging Traits and Environmental Conditions on Return Patterns in Juvenile King Penguins

Claire Saraux; Vincent A. Viblanc; Nicolas Hanuise; Yvon Le Maho; Céline Le Bohec

Despite the importance of early life stages in individuals life history and population dynamics, very few studies have focused on the constraints to which these juvenile traits are subjected. Based on 10 years of automatic monitoring of over 2500 individuals, we present the first study on the effects of environmental conditions and individual pre-fledging traits on the post-fledging return of non-banded king penguins to their natal colony. Juvenile king penguins returned exclusively within one of the three austral summers following their departure. A key finding is that return rates (range 68–87%) were much higher than previously assumed for this species, importantly meaning that juvenile survival is very close to that of adults. Such high figures suggest little juvenile dispersal, and selection occurring mostly prior to fledging in king penguins. Pre-fledging conditions had a strong quadratic impact on juvenile return rates. As expected, cohorts reared under very unfavourable years (as inferred by the breeding success of the colony) exhibited low return rates but surprisingly, so did those fledged under very favourable conditions. Juvenile sojourns away from the colony were shorter under warm conditions and subsequent return rates higher, suggesting a positive effect of climate warming. The longer the post-fledging trip (1, 2 or 3 years), the earlier in the summer birds returned to their natal colony and the longer they stayed before leaving for the winter journey. The presence of juveniles in the colony was more than twice the duration required for moulting purposes, yet none attempted breeding in the year of their first return. Juvenile presence in the colony may be important for acquiring knowledge on the social and physical colonial environment and may play an important part in the learning process of mating behaviour. Further studies are required to investigate its potential implications on other life-history traits such as recruitment age.


The Journal of Experimental Biology | 2012

King penguins adjust their diving behaviour with age

Maryline Le Vaillant; Rory P. Wilson; Akiko Kato; Claire Saraux; Nicolas Hanuise; Onésime Prud'Homme; Yvon Le Maho; Céline Le Bohec; Yan Ropert-Coudert

SUMMARY Increasing experience in long-lived species is fundamental to improving breeding success and ultimately individual fitness. Diving efficiency of marine animals is primarily determined by their physiological and mechanical characteristics. This efficiency may be apparent via examination of biomechanical performance (e.g. stroke frequency and amplitude, change in buoyancy or body angle, etc.), which itself may be modulated according to resource availability, particularly as a function of depth. We investigated how foraging and diving abilities vary with age in a long-lived seabird. During two breeding seasons, small accelerometers were deployed on young (5 year old) and older (8/9 year old) brooding king penguins (Aptenodytes patagonicus) at the Crozet Archipelago, Indian Ocean. We used partial dynamic body acceleration (PDBA) to quantify body movement during dive and estimate diving cost. During the initial part of the descent, older birds exerted more effort for a given speed but younger penguins worked harder in relation to performance at greater depths. Younger birds also worked harder per unit speed for virtually the whole of the ascent. We interpret these differences using a model that takes into account the upthrust and drag to which the birds are subjected during the dive. From this, we suggest that older birds inhale more at the surface but that an increase in the drag coefficient is the factor leading to the increased effort to swim at a given speed by the younger birds at greater depths. We propose that this higher drag may be the result of young birds adopting less hydrodynamic postures or less direct trajectories when swimming or even having a plumage in poorer condition.


PLOS ONE | 2011

It costs to be clean and fit: energetics of comfort behavior in breeding-fasting penguins.

Vincent A. Viblanc; Adeline Mathien; Claire Saraux; Vanessa M. Viera; René Groscolas

Background Birds may allocate a significant part of time to comfort behavior (e.g., preening, stretching, shaking, etc.) in order to eliminate parasites, maintain plumage integrity, and possibly reduce muscular ankylosis. Understanding the adaptive value of comfort behavior would benefit from knowledge on the energy costs animals are willing to pay to maintain it, particularly under situations of energy constraints, e.g., during fasting. We determined time and energy devoted to comfort activities in freely breeding king penguins (Aptenodytes patagonicus), seabirds known to fast for up to one month during incubation shifts ashore. Methodology/Principal Findings A time budget was estimated from focal and scan sampling field observations and the energy cost of comfort activities was calculated from the associated increase in heart rate (HR) during comfort episodes, using previously determined equations relating HR to energy expenditure. We show that incubating birds spent 22% of their daily time budget in comfort behavior (with no differences between day and night) mainly devoted to preening (73%) and head/body shaking (16%). During comfort behavior, energy expenditure averaged 1.24 times resting metabolic rate (RMR) and the corresponding energy cost (i.e., energy expended in excess to RMR) was 58 kJ/hr. Energy expenditure varied greatly among various types of comfort behavior, ranging from 1.03 (yawning) to 1.78 (stretching) times RMR. Comfort behavior contributed 8.8–9.3% to total daily energy expenditure and 69.4–73.5% to energy expended daily for activity. About half of this energy was expended caring for plumage. Conclusion/Significance This study is the first to estimate the contribution of comfort behavior to overall energy budget in a free-living animal. It shows that although breeding on a tight energy budget, king penguins devote a substantial amount of time and energy to comfort behavior. Such findings underline the importance of comfort behavior for the fitness of colonial seabirds.


Polar Biology | 2015

Telomere length reflects individual quality in free-living adult king penguins

Maryline Le Vaillant; Vincent A. Viblanc; Claire Saraux; Céline Le Bohec; Yvon Le Maho; Akiko Kato; François Criscuolo; Yan Ropert-Coudert

Growing evidence suggests that telomeres, non-coding DNA sequences that shorten with age and stress, are related in an undefined way to individual breeding performances and survival rates in several species. Short telomeres and elevated shortening rates are typically associated with life stress and low health. As such, telomeres could serve as an integrative proxy of individual quality, describing the overall biological state of an individual at a given age. Telomere length could be associated with the decline of an array of physiological traits in age-controlled individuals. Here, we investigated the links between individuals’ relative telomere length, breeding performance and various physiological (body condition, natural antibody levels) and life history (age, past breeding success) parameters in a long-lived seabird species, the king penguin Aptenodytes patagonicus. While we observed no link between relative telomere length and age, we found that birds with longer telomeres arrived earlier for breeding at the colony, and had higher breeding performances (i.e. the amount of time adults managed to maintain their chicks alive, and ultimately breeding success) than individuals with shorter telomeres. Further, we observed a positive correlation between telomere length and natural antibody levels. Taken together, our results add to the growing evidence that telomere length is likely to reflect individual quality difference in wild animal.


Nature Methods | 2014

Rovers minimize human disturbance in research on wild animals

Yvon Le Maho; Jason D. Whittington; Nicolas Hanuise; Louise Pereira; Matthieu Boureau; Mathieu Brucker; Nicolas Chatelain; Julien Courtecuisse; Francis Crenner; Benjamin Friess; Edith Grosbellet; Laëtitia Kernaléguen; Frédérique Olivier; Claire Saraux; Nathanaël Vetter; Vincent A. Viblanc; Bernard Thierry; Pascale Tremblay; René Groscolas; Céline Le Bohec

Investigating wild animals while minimizing human disturbance remains an important methodological challenge. When approached by a remote-operated vehicle (rover) which can be equipped to make radio-frequency identifications, wild penguins had significantly lower and shorter stress responses (determined by heart rate and behavior) than when approached by humans. Upon immobilization, the rover—unlike humans—did not disorganize colony structure, and stress rapidly ceased. Thus, rovers can reduce human disturbance of wild animals and the resulting scientific bias.


Comptes Rendus Biologies | 2011

An ethical issue in biodiversity science: the monitoring of penguins with flipper bands

Yvon Le Maho; Claire Saraux; Joël M. Durant; Vincent A. Viblanc; Michel Gauthier-Clerc; Nigel G. Yoccoz; Nils Chr. Stenseth; Céline Le Bohec

Individual marking is essential to study the life-history traits of animals and to track them in all kinds of ecological, behavioural or physiological studies. Unlike other birds, penguins cannot be banded on their legs due to their leg joint anatomy and a band is instead fixed around a flipper. However, there is now detailed evidence that flipper-banding has a detrimental impact on individuals. It can severely injure flipper tissues, and the drag effect of their flipper bands results in a higher energy expenditure when birds are moving through the water. It also results in lower efficiency in foraging, since they require longer foraging trips, as well as in lower survival and lower breeding success. Moreover, due to the uncertainty of the rate of band loss, flipper bands induce a scientific bias. These problems, which obviously have serious ethical implications, can be avoided with alternative methods such as radiofrequency identification techniques.


Physiological and Biochemical Zoology | 2012

Body Girth as an Alternative to Body Mass for Establishing Condition Indexes in Field Studies: A Validation in the King Penguin

Vincent A. Viblanc; Pierre Bize; François Criscuolo; Maryline Le Vaillant; Claire Saraux; Sylvia Pardonnet; Benoit Gineste; Marion Kauffmann; Onésime Prud’homme; Yves Handrich; Sylvie Massemin; René Groscolas; Jean-Patrice Robin

Body mass and body condition are often tightly linked to animal health and fitness in the wild and thus are key measures for ecophysiologists and behavioral ecologists. In some animals, such as large seabird species, obtaining indexes of structural size is relatively easy, whereas measuring body mass under specific field circumstances may be more of a challenge. Here, we suggest an alternative, easily measurable, and reliable surrogate of body mass in field studies, that is, body girth. Using 234 free-living king penguins (Aptenodytes patagonicus) at various stages of molt and breeding, we measured body girth under the flippers, body mass, and bill and flipper length. We found that body girth was strongly and positively related to body mass in both molting () and breeding () birds, with the mean error around our predictions being 6.4%. Body girth appeared to be a reliable proxy measure of body mass because the relationship did not vary according to year and experimenter, bird sex, or stage within breeding groups. Body girth was, however, a weak proxy of body mass in birds at the end of molt, probably because most of those birds had reached a critical depletion of energy stores. Body condition indexes established from ordinary least squares regressions of either body girth or body mass on structural size were highly correlated (), suggesting that body girth was as good as body mass in establishing body condition indexes in king penguins. Body girth may prove a useful proxy to body mass for estimating body condition in field investigations and could likely provide similar information in other penguins and large animals that may be complicated to weigh in the wild.


PLOS ONE | 2014

Inter-Annual Variability of Fledgling Sex Ratio in King Penguins

Célia Bordier; Claire Saraux; Vincent A. Viblanc; Hélène Gachot-Neveu; Magali Beaugey; Yvon Le Maho; Céline Le Bohec

As the number of breeding pairs depends on the adult sex ratio in a monogamous species with biparental care, investigating sex-ratio variability in natural populations is essential to understand population dynamics. Using 10 years of data (2000–2009) in a seasonally monogamous seabird, the king penguin (Aptenodytes patagonicus), we investigated the annual sex ratio at fledging, and the potential environmental causes for its variation. Over more than 4000 birds, the annual sex ratio at fledging was highly variable (ranging from 44.4% to 58.3% of males), and on average slightly biased towards males (51.6%). Yearly variation in sex-ratio bias was neither related to density within the colony, nor to global or local oceanographic conditions known to affect both the productivity and accessibility of penguin foraging areas. However, rising sea surface temperature coincided with an increase in fledging sex-ratio variability. Fledging sex ratio was also correlated with difference in body condition between male and female fledglings. When more males were produced in a given year, their body condition was higher (and reciprocally), suggesting that parents might adopt a sex-biased allocation strategy depending on yearly environmental conditions and/or that the effect of environmental parameters on chick condition and survival may be sex-dependent. The initial bias in sex ratio observed at the juvenile stage tended to return to 1∶1 equilibrium upon first breeding attempts, as would be expected from Fisher’s classic theory of offspring sex-ratio variation.

Collaboration


Dive into the Claire Saraux's collaboration.

Top Co-Authors

Avatar

Yvon Le Maho

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Groscolas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yan Ropert-Coudert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryline Le Vaillant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge