Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Soudais is active.

Publication


Featured researches published by Claire Soudais.


Science | 2003

Pyogenic bacterial infections in humans with IRAK-4 deficiency.

Capucine Picard; Anne Puel; Marion Bonnet; Cheng Lung Ku; Jacinta Bustamante; Kun Yang; Claire Soudais; Stéphanie Dupuis; Jacqueline Feinberg; Claire Fieschi; Carole Elbim; Remi Hitchcock; David A. Lammas; Graham Davies; Abdulaziz Al-Ghonaium; Hassan Al-Rayes; Sulaiman Al-Jumaah; Sami Al-Hajjar; Ibrahim Al-Mohsen; Husn H. Frayha; Rajivi Rucker; Thomas R. Hawn; Alan Aderem; Haysam Tufenkeji; Soichi Haraguchi; Noorbibi K. Day; Robert A. Good; Marie Anne Gougerot-Pocidalo; Adrian Ozinsky; Jean-Laurent Casanova

MyD88 is a key downstream adapter for most Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 deficiency in mice leads to susceptibility to a broad range of pathogens in experimental settings of infection. We describe a distinct situation in a natural setting of human infection. Nine children with autosomal recessive MyD88 deficiency suffered from life-threatening, often recurrent pyogenic bacterial infections, including invasive pneumococcal disease. However, these patients were otherwise healthy, with normal resistance to other microbes. Their clinical status improved with age, but not due to any cellular leakiness in MyD88 deficiency. The MyD88-dependent TLRs and IL-1Rs are therefore essential for protective immunity to a small number of pyogenic bacteria, but redundant for host defense to most natural infections.


Nature Immunology | 2010

Antimicrobial activity of mucosal-associated invariant T cells

Lionel Le Bourhis; Emmanuel Martin; Isabelle Peguillet; Amélie Guihot; Nathalie Froux; Maxime Coré; Eva Lévy; Mathilde Dusseaux; Vanina Meyssonnier; Virginie Premel; Charlotte Ngo; Béatrice Riteau; Livine Duban; Delphine Robert; Shouxiong Huang; Martin Rottman; Claire Soudais; Olivier Lantz

Mucosal-associated invariant T lymphocytes (MAIT lymphocytes) are characterized by two evolutionarily conserved features: an invariant T cell antigen receptor (TCR) α-chain and restriction by the major histocompatibility complex (MHC)-related protein MR1. Here we show that MAIT cells were activated by cells infected with various strains of bacteria and yeast, but not cells infected with virus, in both humans and mice. This activation required cognate interaction between the invariant TCR and MR1, which can present a bacteria-derived ligand. In humans, we observed considerably fewer MAIT cells in blood from patients with bacterial infections such as tuberculosis. In the mouse, MAIT cells protected against infection by Mycobacterium abscessus or Escherichia coli. Thus, MAIT cells are evolutionarily conserved innate-like lymphocytes that sense and help fight off microbial infection.


Blood | 2011

Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells.

Mathilde Dusseaux; Emmanuel Martin; Nacer Serriari; Isabelle Peguillet; Virginie Premel; Delphine Louis; Maud Milder; Lionel Le Bourhis; Claire Soudais; Emmanuel Treiner; Olivier Lantz

Mucosal-associated invariant T (MAIT) cells are very abundant in humans and have antimicrobial specificity, but their functions remain unclear. MAIT cells are CD161(hi)IL-18Rα(+) and either CD4(-)CD8(-) (DN) or CD8αβ(int) T cells. We now show that they display an effector-memory phenotype (CD45RA(-)CD45RO(+)CD95(hi)CD62L(lo)), and their chemokine receptor expression pattern (CCR9(int)CCR7(-)CCR5(hi)CXCR6(hi)CCR6(hi)) indicates preferential homing to tissues and particularly the intestine and the liver. MAIT cells can represent up to 45% of the liver lymphocytes. They produce interferon-γ and Granzyme-B as well as high levels of interleukin-17 after phorbol myristate acetate + ionomycin stimulation. Most MAIT cells are noncycling cells (< 1% are Ki-67(+)) and express the multidrug resistance transporter (ABCB1). As expected from this phenotype, MAIT cells are more resistant to chemotherapy than other T-cell populations. These features might also allow MAIT cells to resist the xenobiotics potentially secreted by the gut bacteria. We also show that this population does not appear to have antiviral specificity and that CD8 MAIT cells include almost all the ABCB1(+)CD161(hi) CD8 T cells. Together with their already known abundance and antimicrobial specificity, the gut-liver homing characteristics, high expression of ABCB1, and ability to secrete interleukin-17 probably participate in the antibacterial properties of MAIT cells.


PLOS Biology | 2009

Stepwise Development of MAIT Cells in Mouse and Human

Emmanuel Martin; Emmanuel Treiner; Livine Duban; Lucia Guerri; Hélène Laude; Cécile Toly; Virginie Premel; Anne Devys; Ivan C. Moura; Florence Tilloy; Stéphane Cherif; Gabriella Vera; Sylvain Latour; Claire Soudais; Olivier Lantz

Mucosal-associated invariant T (MAIT) cells display two evolutionarily conserved features: an invariant T cell receptor (TCR)α (iTCRα) chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC) molecule, MHC-related molecule 1 (MR1). MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanVα7.2 antibody and MAIT cell-specific iTCRα and TCRβ transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRα and TCRβ transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT) cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%–4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the periphery in a process dependent both upon B cells and the bacterial flora. Thus, their development follows a unique pattern at the crossroad of NKT and γδ T cells.


American Journal of Human Genetics | 2002

Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds.

Capucine Picard; Claire Fieschi; Frédéric Altare; Suliman Al-Jumaah; Sami Al-Hajjar; Jacqueline Feinberg; Stéphanie Dupuis; Claire Soudais; Ibrahim Al-Mohsen; Emmanuelle Génin; David A. Lammas; Dinakantha Kumararatne; Tony Leclerc; Arash Rafii; Husn H. Frayha; Belinda Murugasu; Lee Bee Wah; Raja Sinniah; Michael Loubser; Emi Okamoto; Abdulaziz Al-Ghonaium; Haysam Tufenkeji; Laurent Abel; Jean-Laurent Casanova

Interleukin-12 (IL12) is a cytokine that is secreted by activated phagocytes and dendritic cells and that induces interferon-gamma production by natural-killer and T lymphocytes. It consists of two subunits, p35 and p40, which are encoded by IL12A and IL12B, respectively. The first reported patient with a genetic cytokine disorder was a Pakistani child, who was homozygous for a large loss-of-function deletion (g.482+82_856-854del) in IL12B. This IL12-deficient child suffered from infections caused by bacille Calmette-Guérin (BCG) and Salmonella enteritidis. We herein report 12 additional patients from five other kindreds. In one kindred from India, the same large deletion that was described elsewhere (g.482+82_856-854del) was identified. In four kindreds from Saudi Arabia, a recessive loss-of-function frameshift insertion (g.315_316insA) was found. A conserved haplotype encompassing the IL12B gene suggested that a founder effect accounted for the recurrence of each mutation. The two founder mutational events-g.482+82_856-854del and g.315_316insA-were estimated to have occurred approximately 700 and approximately 1,100 years ago, respectively. Among a total of 13 patients with IL12 deficiency, 1 child had salmonellosis only and 12 suffered from clinical disease due to BCG or environmental nontuberculous mycobacteria. One patient also had clinical disease caused by virulent Mycobacterium tuberculosis, five patients had clinical disease caused by Salmonella serotypes, and one patient had clinical disease caused by Nocardia asteroides. The clinical outcome varies from case to case, since five patients (aged 2-11 years) died of overwhelming infection, whereas eight patients (aged 3-12 years) are still in good health and are not currently taking antibiotics. In conclusion, IL12 deficiency is not limited to a single kindred, shows significant variability of outcome, and should be considered in the genetic diagnosis of patients with mycobacteriosis and/or salmonellosis. To date, two founder IL12B mutations have been identified, accounting for the recurrence of a large deletion and a small insertion within populations from the Indian subcontinent and from the Arabian Peninsula, respectively.


Nature Genetics | 2005

Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations

Guillaume Vogt; Ariane Chapgier; Kun Yang; Nadia Chuzhanova; Jacqueline Feinberg; Claire Fieschi; Stéphanie Boisson-Dupuis; Alexandre Alcaïs; Jacinta Bustamante; Ludovic de Beaucoudrey; Ibrahim Al-Mohsen; Sami Al-Hajjar; Abdulaziz Al-Ghonaium; Parisa Adimi; Mehdi Mirsaeidi; Soheila Khalilzadeh; Sergio D. Rosenzweig; Oscar De La Galle Martin; Thomas R. Bauer; Jennifer M. Puck; Hans D. Ochs; Dieter Furthner; Carolin Engelhorn; Bernd H. Belohradsky; Davood Mansouri; Steven M. Holland; Robert D. Schreiber; Laurent Abel; David Neil Cooper; Claire Soudais

Mutations involving gains of glycosylation have been considered rare, and the pathogenic role of the new carbohydrate chains has never been formally established. We identified three children with mendelian susceptibility to mycobacterial disease who were homozygous with respect to a missense mutation in IFNGR2 creating a new N-glycosylation site in the IFNγR2 chain. The resulting additional carbohydrate moiety was both necessary and sufficient to abolish the cellular response to IFNγ. We then searched the Human Gene Mutation Database for potential gain-of-N-glycosylation missense mutations; of 10,047 mutations in 577 genes encoding proteins trafficked through the secretory pathway, we identified 142 candidate mutations (∼1.4%) in 77 genes (∼13.3%). Six mutant proteins bore new N-linked carbohydrate moieties. Thus, an unexpectedly high proportion of mutations that cause human genetic disease might lead to the creation of new N-glycosylation sites. Their pathogenic effects may be a direct consequence of the addition of N-linked carbohydrate.


Trends in Immunology | 2011

Mucosal-associated invariant T cells: unconventional development and function.

Lionel Le Bourhis; Lucia Guerri; Mathilde Dusseaux; Emmanuel Martin; Claire Soudais; Olivier Lantz

Mucosal-associated invariant T (MAIT) cells are a population of T cells that display a semi-invariant T cell receptor (TCR) and are restricted by the evolutionarily conserved major histocompatibility complex related molecule, MR1. Here, we review recent knowledge of this T cell population. MAIT cells are abundant in human blood, gut and liver, and display an effector phenotype. They follow an atypical pathway of development and preferentially locate to peripheral tissues. Human and mouse MAIT cells react to bacterially infected cells in an MR1-dependent manner. They migrate to the infection site and can be protective in experimental infection models. MAIT cells secrete interferon-γ, and interleukin-17 under certain conditions. The species conservation, as well as the wide microbial reactivity, infer an important role for this cell population in immunity.


PLOS Pathogens | 2013

MAIT cells detect and efficiently lyse bacterially-infected epithelial cells.

Lionel Le Bourhis; Mathilde Dusseaux; Armelle Bohineust; Stéphanie Bessoles; Emmanuel Martin; Virginie Premel; Maxime Coré; David Sleurs; Nacer-Eddine Serriari; Emmanuel Treiner; Claire Hivroz; Philippe J. Sansonetti; Marie-Lise Gougeon; Claire Soudais; Olivier Lantz

Mucosal associated invariant T cells (MAIT) are innate T lymphocytes that detect a large variety of bacteria and yeasts. This recognition depends on the detection of microbial compounds presented by the evolutionarily conserved major-histocompatibility-complex (MHC) class I molecule, MR1. Here we show that MAIT cells display cytotoxic activity towards MR1 overexpressing non-hematopoietic cells cocultured with bacteria. The NK receptor, CD161, highly expressed by MAIT cells, modulated the cytokine but not the cytotoxic response triggered by bacteria infected cells. MAIT cells are also activated by and kill epithelial cells expressing endogenous levels of MRI after infection with the invasive bacteria Shigella flexneri. In contrast, MAIT cells were not activated by epithelial cells infected by Salmonella enterica Typhimurium. Finally, MAIT cells are activated in human volunteers receiving an attenuated strain of Shigella dysenteriae-1 tested as a potential vaccine. Thus, in humans, MAIT cells are the most abundant T cell subset able to detect and kill bacteria infected cells.


PLOS Genetics | 2006

Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease.

Ariane Chapgier; Stéphanie Boisson-Dupuis; Emmanuelle Jouanguy; Guillaume Vogt; Jacqueline Feinberg; Ada Prochnicka-Chalufour; Armanda Casrouge; Kun Yang; Claire Soudais; Claire Fieschi; Orchidée Filipe Santos; Jacinta Bustamante; Capucine Picard; Ludovic de Beaucoudrey; Jean-François Emile; Peter D. Arkwright; Robert D. Schreiber; C. Rolinck-Werninghaus; Angela Rösen-Wolff; Klaus Magdorf; Joachim Roesler; Jean-Laurent Casanova

The transcription factor signal transducer and activator of transcription-1 (STAT1) plays a key role in immunity against mycobacterial and viral infections. Here, we characterize three human STAT1 germline alleles from otherwise healthy patients with mycobacterial disease. The previously reported L706S, like the novel Q463H and E320Q alleles, are intrinsically deleterious for both interferon gamma (IFNG)–induced gamma-activating factor–mediated immunity and interferon alpha (IFNA)–induced interferon-stimulated genes factor 3–mediated immunity, as shown in STAT1-deficient cells transfected with the corresponding alleles. Their phenotypic effects are however mediated by different molecular mechanisms, L706S affecting STAT1 phosphorylation and Q463H and E320Q affecting STAT1 DNA-binding activity. Heterozygous patients display specifically impaired IFNG-induced gamma-activating factor–mediated immunity, resulting in susceptibility to mycobacteria. Indeed, IFNA-induced interferon-stimulated genes factor 3–mediated immunity is not affected, and these patients are not particularly susceptible to viral disease, unlike patients homozygous for other, equally deleterious STAT1 mutations recessive for both phenotypes. The three STAT1 alleles are therefore dominant for IFNG-mediated antimycobacterial immunity but recessive for IFNA-mediated antiviral immunity at the cellular and clinical levels. These STAT1 alleles define two forms of dominant STAT1 deficiency, depending on whether the mutations impair STAT1 phosphorylation or DNA binding.


Journal of Clinical Investigation | 2015

Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients

Isabelle Magalhaes; Karine Pingris; Christine Poitou; Stéphanie Bessoles; Nicolas Venteclef; Badr Kiaf; Lucie Beaudoin; Jennifer Da silva; Omran Allatif; Jamie Rossjohn; Lars Kjer-Nielsen; James McCluskey; Séverine Ledoux; Laurent Genser; Adriana Torcivia; Claire Soudais; Olivier Lantz; Christian Boitard; Judith Aron-Wisnewsky; Etienne Larger; Karine Clément; Agnès Lehuen

Obesity and type 2 diabetes (T2D) are associated with low-grade inflammation, activation of immune cells, and alterations of the gut microbiota. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial ligands, are present in blood and enriched in mucosal and inflamed tissues. Here, we analyzed MAIT cells in the blood and adipose tissues of patients with T2D and/or severe obesity. We determined that circulating MAIT cell frequency was dramatically decreased in both patient groups, and this population was even undetectable in some obese patients. Moreover, in both patient groups, circulating MAIT cells displayed an activated phenotype that was associated with elevated Th1 and Th17 cytokine production. In obese patients, MAIT cells were more abundant in adipose tissue than in the blood and exhibited a striking IL-17 profile. Bariatric surgery in obese patients not only improved their metabolic parameters but also increased circulating MAIT cell frequency at 3 months after surgery. Similarly, cytokine production by blood MAIT cells was strongly decreased after surgery. This study reveals profound MAIT cell abnormalities in patients harboring metabolic disorders, suggesting their potential role in these pathologies.

Collaboration


Dive into the Claire Soudais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Fischer

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Capucine Picard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Cavazzana-Calvo

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge