Claire Utton
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Utton.
Advances in Applied Ceramics | 2013
Paul Swift; Hajime Kinoshita; N.C. Collier; Claire Utton
Abstract Abrstract The present study is part of a wider investigation to develop an alternative cementing system for the encapsulation of problematic low and intermediate level radioactive waste. It has been suggested that alternative cementing systems, with lower internal pH than conventional Portland cement based composite cements, may reduce the corrosion of some reactive metals and may be beneficial for the long term durability of wasteforms. A potential alternative is an acid–base cementing system, based on mixing calcium aluminate cement (CAC) with acidic phosphate solutions. Although these systems have been studied previously, there has been no systematic investigation to identify phosphates for producing suitable matrixes for application in radioactive waste encapsulation. In the current study, monophosphate modified CAC formulations did not set or develop significant strength, whereas polyphosphate modified CAC formulations exhibited rapid setting and strength development. It is proposed that polyphosphate modified systems form amorphous reaction products, which act as binders between the partially and unreacted CAC particles, and were responsible for high strength development. Thermogravimetric analysis and scanning electron microscopy results suggest that this binding matrix consists of amorphous calcium phosphate and alumina gel. The results presented in this investigation suggest that polyphosphate modified CAC has potential as an alternative cementing system for radioactive waste encapsulation.
Science and Technology of Advanced Materials | 2017
Ioannis Papadimitriou; Claire Utton; P. Tsakiropoulos
Abstract Nb-silicide based alloys could be used at T > 1423 K in future aero-engines. Titanium is an important additive to these new alloys where it improves oxidation, fracture toughness and reduces density. The microstructures of the new alloys consist of an Nb solid solution, and silicides and other intermetallics can be present. Three Nb5Si3 polymorphs are known, namely αNb5Si3 (tI32 Cr5B3-type, D8l), βNb5Si3 (tI32 W5Si3-type, D8m) and γNb5Si3 (hP16 Mn5Si3-type, D88). In these 5–3 silicides Nb atoms can be substituted by Ti atoms. The type of stable Nb5Si3 depends on temperature and concentration of Ti addition and is important for the stability and properties of the alloys. The effect of increasing concentration of Ti on the transition temperature between the polymorphs has not been studied. In this work first-principles calculations were used to predict the stability and physical properties of the various Nb5Si3 silicides alloyed with Ti. Temperature-dependent enthalpies of formation were computed, and the transition temperature between the low (α) and high (β) temperature polymorphs of Nb5Si3 was found to decrease significantly with increasing Ti content. The γNb5Si3 was found to be stable only at high Ti concentrations, above approximately 50 at. % Ti. Calculation of physical properties and the Cauchy pressures, Pugh’s index of ductility and Poisson ratio showed that as the Ti content increased, the bulk moduli of all silicides decreased, while the shear and elastic moduli and the Debye temperature increased for the αNb5Si3 and γNb5Si3 and decreased for βNb5Si3. With the addition of Ti the αNb5Si3 and γNb5Si3 became less ductile, whereas the βNb5Si3 became more ductile. When Ti was added in the αNb5Si3 and βNb5Si3 the linear thermal expansion coefficients of the silicides decreased, but the anisotropy of coefficient of thermal expansion did not change significantly.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2015
Ioannis Papadimitriou; Claire Utton; P. Tsakiropoulos
First-principles calculations were used to study intermetallic compounds in the Nb-Ge system, to gain a better understanding of the phase diagram and resolve conflicts reported in the literature. The enthalpy of formation with regard to temperature was calculated for all the intermetallic compounds, to investigate phase stabilities and phase equilibria at low and elevated temperatures. These results, combined with the electronic DOS, suggest that the tI32 (W5Si3-type) Nb5Ge3 and NbGe2 compounds are stable over the whole temperature range. The stoichiometric cP8 Nb3Ge becomes stable close to its melting temperature. Regarding different compositions of the cP8 Nb3Ge, the calculations suggest the (Nb)0.75(Nb,Ge)0.25 model for the Nb3Ge phase instead of the proposed model, (Nb)0.75(Nb,Ge,Va)0.25, where Va represents vacancy. The calculations show that the tI32 (Cr5B3-type) Nb5Ge3, hP16 (Mn5Si3-type) Nb5Ge3 and Nb10Ge7 compounds should be considered metastable. The elastic constants, bulk, shear, and Young’s modulus, Poisson’s ratio, and Debye temperature of the Nb, Ge, cP8 Nb3Ge, tP32 Nb3Ge, tI32 (Cr5B3-type) Nb5Ge3, tI32 (W5Si3-type) Nb5Ge3, hP16 (Mn5Si3-type) Nb5Ge3, Nb10Ge7 and NbGe2 were calculated. These phases were found to be mechanically stable. Using the Cauchy pressure, Pugh’s index of ductility, and the Poisson’s ratio as criteria, the calculations suggest that the tI32 (Cr5B3-type) Nb5Ge3 and NbGe2 intermetallics should be brittle (with the latter being the most brittle) and the cP8 Nb3Ge, tP32 Nb3Ge, hP16 Nb5Si3 and Nb10Ge7 ductile (with cP8 Nb3Ge being the most ductile).
Materials | 2018
Jack Nelson; Mohammad Ghadyani; Claire Utton; P. Tsakiropoulos
In Nb-silicide based alloys Al, Cr, Hf, and Ti additions are crucial for achieving balance of properties. It is not known how the simultaneous addition of Hf with Al and Ti, or Hf with Al, Cr, and Ti affects macrosegregation, and how the alloying affects hardness, Young’s modulus and bulk alloy oxidation, and contamination of the solid solution Nbss and the Nb5Si3 compound by oxygen. Two alloys with nominal compositions (at.%) Nb-24Ti-18Si-5Al-5Hf (alloy NbSiTiHf-5Al) and Nb-24Ti-18Si-5Al-5Cr-5Hf (alloy NbSiTiHf-5Al-5Cr) were studied in the as-cast and heat-treated conditions and after isothermal oxidation at 800 and 1200 °C and were compared with similar alloys without Hf. In both alloys there was macrosegregation of Si and Ti, which was more severe in NbSiTiHf-5Al. Both alloys formed Nbss+βNb5Si3 eutectic. The Nbss was stable and its Al and Cr concentrations increased with increasing Ti concentration. In both conditions the βNb5Si3 was observed in the alloys NbSiTiHf-5Al and NbSiTiHf-5Al-5Cr, and the γNb5Si3 only in the alloy NbSiTiHf-5Al. In both heat-treated alloys, separate Hf-rich Nb5Si3 grains were formed. The Si and Al concentrations in Nb5Si3 respectively decreased and increased with increasing Ti concentration. Al and Cr had a stronger hardening effect in the Nbss than Al, Cr, and Hf. Al, Cr, and Ti had a stronger negative effect on the Young’s modulus of the Nbss compared with Al, Cr, Hf, and Ti. When Nb was substituted by Ti, Cr, and Hf, and Si by Al in the βNb5Si3, the Young’s modulus was reduced compared with the unalloyed silicide. At 800 °C both alloys did not exhibit catastrophic pest-oxidation after 100 h. The Nbss and Nb5Si3 were contaminated by oxygen in both alloys, the former more severely. At 1200 °C the scales spalled-off, more severely in the alloy NbSiTiHf-5Al, where substrate that was heavily contaminated by oxygen below the scale also spalled-off. In both alloys the contamination of Nb5Si3 and Nbss by oxygen was more severe compared with 800 °C, but the silicides were not contaminated by oxygen in their bulk. The Nbss was not contaminated by oxygen only in the bulk of the alloy NbSiTiHf-5Al-5Cr.
Materials | 2018
Zhen Xu; Claire Utton; P. Tsakiropoulos
Alloying with Al, Cr, Sn, and Ti significantly improves the oxidation of Nb silicide-based alloys at intermediate and high temperatures. There is no agreement about what the concentration of Sn in the alloys should be. It has been suggested that with Sn ≤ 3 at.% the oxidation is improved and formation of the brittle A15-Nb3Sn compound is suppressed. Definite improvements in oxidation behaviour have been observed with 5 at.% Sn or even higher concentrations, up to 8 at.% Sn. The research reported in this paper is about three model alloys with low Sn concentration and nominal compositions Nb-24Ti-18Si-5Cr-2Sn (ZX3), Nb-24Ti-18Si-5Al-2Sn (ZX5), and Nb-24Ti-18Si-5Al-5Cr-2Sn (ZX7) that were studied to understand the effect of the 2 at.% Sn addition on as-cast and heat-treated microstructures and isothermal oxidation in air at 800 and 1200 °C for 100 h. There was macrosegregation of Si and Ti in the alloys ZX3 and ZX5 and only of Si in the alloy ZX7. The Nbss was stable in all alloys. Tin and Ti exhibited opposite partitioning behaviour in the Nbss. The βNb5Si3 was the primary phase in all three cast alloys and had partially transformed to αNb5Si3 in the alloy ZX3. Aluminium in synergy with Sn increased the sluggishness of the βNb5Si3 to αNb5Si3 transformation during solidification. After the heat treatment the transformation of βNb5Si3 to αNb5Si3 had been completed in all three alloys. Fine precipitates were observed inside some αNb5Si3 grains in the alloys ZX5 and ZX7. In the latter alloys the A15-Nb3X (X = Al, Si, and Sn) formed after the heat treatment, i.e., the synergy of Al and Sn promoted the stability of A15-Nb3X intermetallic in these Nb-silicide-based alloys even at this low Sn concentration. A Nbss + Nb5Si3 eutectic formed in all three alloys and there was evidence of anomalous eutectic in the parts of the alloys ZX3 and ZX7 that had solidified under high cooling rate and/or high melt undercooling. A very fine ternary Nbss + Nb5Si3 + NbCr2 eutectic was also observed in parts of the alloy ZX3 that had solidified under high cooling rate. At 800 °C none of the alloys suffered from catastrophic pest oxidation; ZX7 had a smaller oxidation rate constant. A thin Sn-rich layer formed continuously between the scale and Nbss in the alloys ZX3 and ZX5. At 1200 °C the scales formed on all three alloys spalled off, the alloys exhibited parabolic oxidation in the early stages followed by linear oxidation; the alloy ZX5 gave the smallest rate constant values. A thicker continuous Sn-rich zone formed between the scale and substrate in all three alloys. This Sn-rich zone was noticeably thicker near the corners of the specimen of the alloy ZX7 and continuous around the whole specimen. The Nb3Sn, Nb5Sn2Si, and NbSn2 compounds were observed in the Sn-rich zone. At both temperatures the scales formed on all three alloys consisted of Nb-rich and Nb and Si-rich oxides, and Ti-rich oxide also was formed in the scales of the alloys ZX3 and ZX7 at 1200 °C. The formation of a Sn-rich layer/zone did not prevent the contamination of the bulk of the specimens by oxygen, as both Nbss and Nb5Si3 were contaminated by oxygen, the former more severely than the latter.
Intermetallics | 2014
Ioannis Papadimitriou; Claire Utton; A.J. Scott; P. Tsakiropoulos
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2015
Ioannis Papadimitriou; Claire Utton; A.J. Scott; P. Tsakiropoulos
Computational Materials Science | 2015
Ioannis Papadimitriou; Claire Utton; P. Tsakiropoulos
Acta Materialia | 2015
Ioannis Papadimitriou; Claire Utton; P. Tsakiropoulos
Cement and Concrete Research | 2011
Claire Utton; Emmanuel Gallucci; J. Hill; N.B. Milestone