Clara Crescioli
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clara Crescioli.
Journal of The American Society of Nephrology | 2007
Elena Lazzeri; Clara Crescioli; Elisa Ronconi; Benedetta Mazzinghi; Costanza Sagrinati; Giuseppe Stefano Netti; Maria Lucia Angelotti; Eliana Parente; Lara Ballerini; Lorenzo Cosmi; Laura Maggi; Loreto Gesualdo; Mario Rotondi; Francesco Annunziato; Enrico Maggi; Laura Lasagni; Mario Serio; Sergio Romagnani; Gabriella Barbara Vannelli; Paola Romagnani
Bone marrow-and adult kidney-derived stem/progenitor cells hold promise in the development of therapies for renal failure. Here is reported the identification and characterization of renal multipotent progenitors in human embryonic kidneys that share CD24 and CD133 surface expression with adult renal progenitors and have the capacity for self-renewal and multilineage differentiation. It was found that these CD24+CD133+ cells constitute the early primordial nephron but progressively disappear during nephron development until they become selectively localized to the urinary pole of Bowmans capsule. When isolated and injected into SCID mice with acute renal failure from glycerol-induced rhabdomyolysis, these cells regenerated different portions of the nephron, reduced tissue necrosis and fibrosis, and significantly improved renal function. No tumorigenic potential was observed. It is concluded that CD24+CD133+ cells represent a subset of multipotent embryonic progenitors that persist in human kidneys from early stages of nephrogenesis. The ability of these cells to repair renal damage, together with their apparent lack of tumorigenicity, suggests their potential in the treatment of renal failure.
Journal of Immunology | 2009
Giuseppe Penna; Benedetta Fibbi; Susana Amuchastegui; Chiara Cossetti; Francesca Aquilano; Gilles Laverny; Mauro Gacci; Clara Crescioli; Mario Maggi; Luciano Adorini
Benign prostatic hyperplasia (BPH), a highly prevalent prostatic condition, could involve an inflammatory component in disease pathogenesis. In this study, we show that human stromal prostate cells obtained from BPH tissue can actively contribute to the inflammatory process by secreting proinflammatory cytokines as well as chemokines able to recruit lymphomonuclear cells and by acting as APCs. BPH cells express all of the TLRs and their ligation leads to the secretion of CXCL8/IL-8, CXCL10, and IL-6. In addition, BPH cells express costimulatory as well as class I and class II MHC molecules, which activate alloreactive CD4+ cells that in turn markedly up-regulate IL-12/IL-23p40 and IL-12p75 secretion by BPH cells. Alloreactive CD4+ cells activated by BPH cells secrete IFN-γ and IL-17. These cytokines up-regulate IL-6, IL-8, and CXCL10 production by BPH cells, creating a positive feedback loop that can amplify inflammation. IL-8 induces autocrine/paracrine proliferation of BPH cells, indicating also a growth-promoting activity of this chemokine in disease pathogenesis. These results show that human BPH cells represent nonprofessional APCs able to induce and sustain chronic inflammatory processes, supporting the relevance of inflammation in BPH pathogenesis.
Clinica Chimica Acta | 2012
Paola Romagnani; Clara Crescioli
Interferon (IFN) γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is a small cytokine belonging to the CXC chemokine family. This family of signaling molecules is known to control several biological functions and to also play pivotal roles in disease initiation and progression. By binding to its specific cognate receptor CXCR3, CXCL10 critically regulates chemotaxis during several immune-inflammatory processes. In particular, this chemokine controls chemotaxis during the inflammatory response resulting from allograft rejection after transplantation. Interestingly, a strong association has been described between CXCL10 production, immune response and the fate of the graft following allotransplantation. Enhanced CXCL10 production has been observed in recipients of transplants of different organs. This enhanced production likely comes from either the graft or the immune cells and is correlated with an increase in the concentration of circulating CXCL10. Because CXCL10 can be easily measured in the serum and plasma from a patient, the detection and quantitation of circulating CXCL10 could be used to reveal a transplant recipients immune status. The purpose of this review is to examine the critical role of CXCL10 in the pathogenesis of allograft rejection following organ transplantation. This important role highlights the potential utilization of CXCL10 not only as a therapeutic target but also as a biomarker to predict the severity of rejection, to monitor the inflammatory status of organ recipients and, hopefully, to fine-tune patient therapy in transplantation.
Experimental Neurology | 2010
Pasquale Gallina; Marco Paganini; Letizia Lombardini; Mario Mascalchi; Berardino Porfirio; Davide Gadda; Mirca Marini; Pamela Pinzani; Francesca Salvianti; Clara Crescioli; Sandra Bucciantini; Claudia Mechi; Erica Sarchielli; Anna Maria Romoli; Elisabetta Bertini; Serena Urbani; Benedetta Bartolozzi; Maria Teresa De Cristofaro; Silvia Piacentini; Riccardo Saccardi; Alberto Pupi; Gabriella Barbara Vannelli; Nicola Di Lorenzo
Rebuilding brain structure and neural circuitries by transplantation of fetal tissue is a strategy to repair the damaged nervous system and is currently being investigated using striatal primordium in Huntingtons disease (HD) patients. Four HD patients underwent bilateral transplantation with human fetal striatal tissues (9-12 week gestation). Small blocks of whole ganglionic eminencies were processed to obtain cell suspension and then stereotactically grafted in the caudate head and in the putamen. Follow-up period ranged between 18 and 34 months (mean, 24.7 months). Surgery was uneventful. Starting from the fourth month after grafting, neo-generation of metabolically active tissue with striatal-like MRI features was observed in 6 out of 8 grafts. The increase in D2 receptor binding suggested striatal differentiation of the neo-generated tissue in 3 patients. New tissue, connecting the developing grafts with the frontal cortex and, in one case, with the ventral striatum, was also observed. The new tissue growth halted after the ninth month post transplantation. All patients showed stabilization or improvement in some neurological indices. No clinical and imaging signs, suggestive of graft uncontrolled growth, were seen. This study provides the first evidence in humans that neuroblasts of a striatal primordium can develop and move into the brain after neurotransplantation. Primordium development resulted in the building of a new structure with the same imaging features as the corresponding mature structure, combined with short- and long-distance targeted migration of neuroblasts. The results of this study support both the reconstructive potential of fetal tissue and the remarkably retained plasticity of adult brain. Further studies are necessary to assess the clinical efficacy of the human fetal striatal transplantation.
Journal of Neuroimmunology | 2008
Benedetta Mazzanti; Alessandra Aldinucci; Tiziana Biagioli; Alessandro Barilaro; Serena Urbani; Simone Dal Pozzo; Maria Pia Amato; Gianfranco Siracusa; Clara Crescioli; Cinzia Manuelli; Alberto Bosi; Riccardo Saccardi; Luca Massacesi; Clara Ballerini
MSCs have been proposed as possible treatment in MS: In this study MSCs obtained from 10 MS patients and 6 healthy donors (HD) were compared in terms of phenotypical and functional characteristics. We show that MSCs isolated from MS and HD differ significantly for IP10 production. Therefore, although MSCs isolated from MS patients exhibit the same properties of HD MSCs in terms of proliferation, phenotype, in vitro differentiation, TLR expression, immunosuppressive ability, inhibition of DC differentiation and activation, the use of autologous MSCs in cell therapy of autoimmune diseases should be submitted to attentive evaluation and treatment.
Journal of Biological Chemistry | 2004
Roberto Giulio Romanelli; Tullio Barni; Mario Maggi; Michaela Luconi; Paola Failli; Anna Pezzatini; Elisabetta Pelo; Francesca Torricelli; Clara Crescioli; Pietro Ferruzzi; Roberto Salerno; Mirca Marini; Carlo Maria Rotella; Gabriella Barbara Vannelli
Olfactory neurons and gonadotropin-releasing hormone (GnRH) neurons share a common origin during organogenesis. Kallmanns syndrome, clinically characterized by anosmia and hypogonadotropic hypogonadism, is due to an abnormality in the migration of olfactory and GnRH neurons. We recently characterized the human FNC-B4 cell line, which retains properties present in vivo in both olfactory and GnRH neurons. In this study, we found that FNC-B4 neurons expressed GnRH receptor and responded to GnRH with time- and dose-dependent increases in GnRH gene expression and protein release (up to 5-fold). In addition, GnRH and its analogs stimulated cAMP production and calcium mobilization, although at different biological thresholds (nanomolar for cAMP and micromolar concentrations for calcium). We also observed that GnRH triggered axon growth, actin cytoskeleton remodeling, and a dose-dependent increase in migration (up to 3–4-fold), whereas it down-regulated nestin expression. All these effects were blocked by a specific GnRH receptor antagonist, cetrorelix. We suggest that GnRH, secreted by olfactory neuroblasts, acts in an autocrine pattern to promote differentiation and migration of those cells that diverge from the olfactory sensory lineage and are committed to becoming GnRH neurons.
Molecular and Cellular Endocrinology | 2002
Sandra Filippi; Gabriella Barbara Vannelli; Simone Granchi; Michaela Luconi; Clara Crescioli; Rosa Mancina; Alessandro Natali; S Brocchi; Linda Vignozzi; E Bencini; Ivo Noci; F. Ledda; Gianni Forti; Mario Maggi
Oxytocin (OT) is a neurohypophysial hormone with unclear physiological functions in the male. Several previous studies indicated that OT might have a role in the ejaculatory process, stimulating sperm release from the epididymal storage. In this study we investigated on the presence and function of OT receptor (OTR) in rabbit and human epididymis. By using RT-PCR, Western and binding studies, we found that OTR gene and protein is expressed in the human epididymis and stimulates in vitro contractility. The immunolocalization of OTR suggests that the receptor is not only present in the smooth muscle cells of the human epididymis but also in the epithelial compartment. Experiments performed in rabbit epididymal epithelial (rEE) cells in culture indicate that OT induces the release of an other potent stimulator of epididymal contractility, endothelin-1 (ET-1), Blocking the ET(A) subtype of the ET-1 receptors, by using a specific antagonist (BQ-123), partially counteracts the contractile effect of OT, suggesting positive interactions between the two peptides in regulating epididymal contractility. Finally, to investigate whether an acute OT administration increases sperm release also in humans, we treated oligozoospermic patients with an intravenous bolus of OT (2.5 IU), just before sperm collection. In a small, single blind study, we found that OT almost doubled sperm retrieval when compared with vehicle administration. Our results indicate that OT might have physiological functions also in the male, controlling epididymal motility and sperm progression through the male genital tract.
Calcified Tissue International | 1993
Maria Luisa Brandi; Clara Crescioli; Annalisa Tanini; U. Frediani; D. Agnusdei; C. Gennari
SummaryIn the present study, we investigated the effects of estrogens on bone endothelial cell metabolism and the presence of estrogen binding sites in the same cells. For these studies, we have used a continuous cell line of clonal bovine bone endothelial cells for evidence of a direct response to estrogensin vitro. Receptor analysis to intact viable cells was steroid specific and saturable, with an apparent dissociation constant of 17.2 nM and a Bmax of 3.2 × 104 sites/cell. Northern blot analysis revealed a 6.5-kilobase mRNA that hybridized with a cDNA to human estrogen receptor. The 6.5-kilobase size is in close agreement with the reported size of the human estrogen receptor mRNA.In vitro estrogen responses of bone endothelial cells included a stimulation of cell proliferation as well as an inhibition of parathyroid hormone responsiveness. These findings clearly demonstrate the presence of functional estrogen receptors in bone endothelial cellsin vitro, suggesting a role of estrogens in bone angiogenesis and in the entire process of bone remodeling.
European Journal of Cell Biology | 2012
Clara Crescioli; Mariangela Sottili; Paolo Bonini; Lorenzo Cosmi; Paola Chiarugi; Paola Romagnani; Gabriella Barbara Vannelli; Marta Colletti; Andrea M. Isidori; Mario Serio; Andrea Lenzi; Luigi Di Luigi
Inflammatory myopathies (IMs) are systemic diseases characterized by a T helper (Th) 1 type inflammatory response and cell infiltrates within skeletal muscles. The mainstay of treatment is drugs aimed at suppressing the immune system - corticosteroids and immunosuppressants. About 25% of patients are non-responders. Skeletal muscle cells seem actively involved in the immune-inflammatory response and not only a target; understanding the molecular bases of IMs might help drug development strategies. Within muscles the interaction between the chemokine interferon (IFN)γ inducible 10 kDa protein, CXCL10 or IP-10, and its specific receptor CXCR3, present on Th1 type infiltrating cells, likely plays a pivotal role, potentially offering the opportunity for therapeutic intervention. We aimed to clarify the involvement of human skeletal muscle cells in inflammatory processes in terms of CXCL10 secretion, to elucidate the engaged molecular mechanism(s) and, finally, to evaluate muscular cell responses, if any, to some immunosuppressants routinely used in IM treatment, such as methylprednisolone, methotrexate, cyclosporin A and Infliximab. We first isolated and characterized human fetal skeletal muscle cells (Hfsmc), which expressed the specific lineage markers and showed the competence to react in the context of an in vitro alloresponse. CXCL10 protein secretion by Hfsmc was similarly induced by the inflammatory cytokines interferon (IFN)γ and tumor necrosis factor (TNF)α, above undetectable control levels, through the activation of Stat1 and NF-kB pathways, respectively; CXCL10 secretion was significantly magnified by cytokine combination, and this synergy was associated to a significant up-regulation of TNFαRII; cytokine-induced CXCL10 secretion was considerably affected only by Infliximab. Our data suggested that human skeletal muscle cells might actively self-promote muscular inflammation by eliciting CXCL10 secretion, which is known to amplify Th1 cell tissue infiltration in vivo. In conclusion, we sustain that pharmacological targeting of CXCL10 within muscular cells might contribute to keep in control pro-Th1 polarization of the immune/inflammatory response.
Transplantation | 2009
Clara Crescioli; Andrea Buonamano; Sabino Scolletta; Mariangela Sottili; Michela Francalanci; Pierpaolo Giomarelli; Bonizella Biagioli; Gianfranco Lisi; Fabio Pradella; Mario Serio; Paola Romagnani; Massimo Maccherini
Background. The detection of acute rejection in heart transplantation remains an important feature of transplant management, especially in the early phase. Frequent surveillance with endomyocardial biopsy is necessary, even though it is an invasive procedure and carries a certain risk. Hence, noninvasive biomarkers able to predict acute rejection could be a further helpful tool in patient management. The interferon-&ggr;-inducible chemokine CXCL10 is required for initiation and development of graft failure caused by acute or chronic rejection. It has been reported that CXCL10 serum level is predictive of graft loss in kidney graft recipients. In the present study, we investigated whether pretransplant CXCL10 serum level may be a predictive noninvasive biomarker in heart transplant (HTx) recipients, as well. Methods. Sera from 143 patients undergoing orthotopic heart transplantation were collected before surgery and tested for CXCL10 and CCL22 and compared with serum samples from healthy subjects. Results. We found that basal CXCL10 serum levels in HTx recipients were significantly higher than in healthy subjects, whereas no difference was seen in CCL22 levels. Among HTx recipients, CXCL10 serum levels of rejectors were significantly higher than in nonrejectors. Our results showed that CXCL10 was a significant independent risk factor of several variables and had the highest predictive value for early acute heart rejection, with 160 pg/mL cutoff value. Conclusions. In HTx recipients, measurement of pretransplant CXCL10 serum levels could be a clinically useful tool for predicting cardiac acute rejection, especially in the early posttransplant period.