Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clara Lucia Garcia-Rodenas is active.

Publication


Featured researches published by Clara Lucia Garcia-Rodenas.


The Journal of Physiology | 2003

The rate of protein digestion affects protein gain differently during aging in humans

Martial Dangin; Christelle Guillet; Clara Lucia Garcia-Rodenas; Pierre Gachon; Corinne Bouteloup-Demange; Kristel Reiffers-Magnani; Jacques Fauquant; Olivier Ballevre; Bernard Beaufrere

In young men ingesting protein meals, slowly digested proteins (caseins: CAS) induce a higher protein gain than those that are rapidly digested (whey proteins: WP). Our aim was to assess whether or not this is true in elderly men receiving mixed meals. The effects of meals containing either CAS or two different amounts of WP (WP‐iN: isonitrogenous with CAS, or WP‐iL: providing the same amount of leucine as CAS) on protein metabolism (assessed by combining oral and intravenous leucine tracers) were compared in nine healthy, elderly (mean ±s.e.m. age 72 ± 1 years) and six young men (24 ± 1 years). In both age groups, WP‐iL and WP‐iN were digested faster than CAS (P < 0.001, ANOVA). Proteolysis was inhibited similarly whatever the meal and age groups (P= NS). Protein synthesis was higher with WP‐iN than with CAS or WP‐iL (P < 0.01), irrespective of age (P= NS). An age‐related effect (P < 0.05) was found with postprandial leucine balance. Leucine balance was higher with CAS than with WP‐iL (P < 0.01) in young men, but not in elderly subjects (P= NS). In isonitrogenous conditions, leucine balance was higher with WP‐iN than with CAS (P < 0.001) in both age groups, but the magnitude of the differences was higher in the elderly men (P= 0.05). In conclusion, during aging, protein gain was greater with WP (rapidly digested protein), and lower with CAS (slowly digested protein). This suggests that a ‘fast’ protein might be more beneficial than a ‘slow’ one to limit protein losses during aging.


Journal of Pediatric Gastroenterology and Nutrition | 2006

Nutritional approach to restore impaired intestinal barrier function and growth after neonatal stress in rats.

Clara Lucia Garcia-Rodenas; Gabriela Bergonzelli; Sophie Nutten; Alexandra Schumann; Christine Cherbut; Marco Turini; Kurt Ornstein; Florence Rochat; Irène Corthesy-Theulaz

Objectives: Psychological stress during the neonatal period results in intestinal barrier dysfunction and growth alterations later in life. We aimed to restore impaired barrier function and growth rate by a nutritional intervention. Methods: Male rat pups (n = 84) were assigned to 1 of 2 rearing conditions from postnatal day (PND) 2 to PND14: S, separated 3 h/d from their mothers, or H, 15 min/d handled controls. From PND15 to PND35, rats received a control diet or a similar diet adapted to contain arachidonic and docosahexaenoic acids, galacto- and fructo-oligosaccharides and Lactobacillus paracasei NCC2461. Results: Maternal separation had only a minor impact on the measured gut barrier parameters at PND15, whereas it severely affected them at PND35. At this age, intestinal permeability to macromolecules was higher, mucin content in small intestinal tissues was lower and microbiota composition was altered in S compared with H animals. Feeding the adapted diet normalized the intestinal permeability, although it did not restore intestinal mucin content or microbiota. In addition, the adapted diet improved the growth rate recovery of the S animals after weaning and resulted in increased villus length in small intestine. Conclusion: Our results suggest that an adapted diet containing specific long-chain polyunsaturated fatty acids, prebiotics and probiotics can revert the negative imprinting of neonatal stress on both intestinal barrier function and growth.


Clinical and translational gastroenterology | 2016

Human Intestinal Barrier Function in Health and Disease

Julia König; Jerry M. Wells; Patrice D. Cani; Clara Lucia Garcia-Rodenas; Thomas T. MacDonald; Annick Mercenier; Jacqueline Whyte; Freddy J. Troost; Robert-Jan M. Brummer

The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed.


British Journal of Nutrition | 2017

Can probiotics modulate human disease by impacting intestinal barrier function

Peter A. Bron; Michiel Kleerebezem; Robert-Jan M. Brummer; Patrice D. Cani; Annick Mercenier; Thomas T. MacDonald; Clara Lucia Garcia-Rodenas; Jerry M. Wells

Intestinal barrier integrity is a prerequisite for homeostasis of mucosal function, which is balanced to maximise absorptive capacity, while maintaining efficient defensive reactions against chemical and microbial challenges. Evidence is mounting that disruption of epithelial barrier integrity is one of the major aetiological factors associated with several gastrointestinal diseases, including infection by pathogens, obesity and diabetes, necrotising enterocolitis, irritable bowel syndrome and inflammatory bowel disease. The notion that specific probiotic bacterial strains can affect barrier integrity fuelled research in which in vitro cell lines, animal models and clinical trials are used to assess whether probiotics can revert the diseased state back to homeostasis and health. This review catalogues and categorises the lines of evidence available in literature for the role of probiotics in epithelial integrity and, consequently, their beneficial effect for the reduction of gastrointestinal disease symptoms.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2017

Homeostasis of the gut barrier and potential biomarkers

Jerry M. Wells; Robert J. Brummer; Muriel Derrien; Thomas T. MacDonald; Freddy J. Troost; Patrice D. Cani; Vassilia Theodorou; Jan P. Dekker; Agnes Meheust; Willem M. de Vos; Annick Mercenier; Arjen Nauta; Clara Lucia Garcia-Rodenas

The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.


Diabetes-metabolism Research and Reviews | 2007

Slow versus fast proteins in the stimulation of beta-cell response and the activation of the entero-insular axis in type 2 diabetes.

Paolo Tessari; Edward Kiwanuka; Michela Cristini; Michela Zaramella; Marc Enslen; Corinna Zurlo; Clara Lucia Garcia-Rodenas

We tested whether ingestion of whey protein can induce greater post‐prandial amino acid (AA) levels in the plasma and a higher beta‐cell response than casein ingestion in type 2 diabetes mellitus patients.


Nutrients | 2017

Early Nutritional Interventions for Brain and Cognitive Development in Preterm Infants: A Review of the Literature

Nora Schneider; Clara Lucia Garcia-Rodenas

Adequate nutrition is important for neurodevelopmental outcomes in preterm-born infants. In this review, we aim to summarize the current knowledge on nutritional interventions initiated during the hospital stay targeting brain and cognitive development benefits in preterm human infants. Studies can broadly be split in general dietary intervention studies and studies investigating specific nutrients or nutritional supplements. In general, mother’s breast milk was reported to be better for preterm infants’ neurodevelopment compared to infant formula. The differences in methodologies make it difficult to conclude any effects of interventions with individual nutrients. Only protein and iron level studies showed some consistent findings regarding optimal doses; however, confirmatory studies are needed. This review does not support some widely accepted associations, such as that between long-chain polyunsaturated fatty acid supplementation and visual development. Clear nutritional recommendations cannot be made based on this review. However, the type of infant nutrition (i.e., breast milk versus formula or donor milk), the timing of the nutritional intervention, and the dose of the nutrient/supplement have been found to be relevant factors in determining the success of nutritional intervention studies in preterm infants.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2017

Importance of the regiospecific distribution of long-chain saturated fatty acids on gut comfort, fat and calcium absorption in infants

Valérie Petit; Laurence Sandoz; Clara Lucia Garcia-Rodenas

Gastrointestinal tolerance and fat and calcium (Ca) absorption are different between breast-fed (BF) and formula-fed (FF) infants. Certain components and/or structural particularities in human milk (HM), can contribute to favorable outcomes in BF infants. In HM, the long-chain saturated fatty acid (LCSFA) palmitic acid has a different stereospecific distribution (sn-2 position) compared to most infant formula (IF) (primarily sn-1, 3 positions), which may contribute to unfavorable outcomes. Evidence suggests palmitic acid is important in the formation of stool FA-mineral (or FA-Ca) soaps, associated with harder stools in FF infants. Partial replacement by structured palmitic acid-rich triacylglycerols (TAGs) promotes palmitic acid absorption. However, evidence for stool softening, improved fat absorption and reduced Ca excretion in stools is inconsistent. IFs with less palmitic acid can improve fat and Ca absorption, and stool consistency. The presence of other LCSFAs (myristic and stearic acids) in sn-1, 3 positions may also contribute to reduced absorption of fat and Ca, and stool hardness, in FF infants. Nevertheless, little attention has been given to modifying these other LCSFAs in IF. We review literature comparing the effect of HM and IF with different lipid compositions on stool patterns and/or fat and Ca absorption in healthy, term infants. Based on available data, we estimate a maximum level for sn-1, 3 LCSFAs of 13% of TAGs, under which fat and Ca absorption and stool consistency are improved. IF designed according to this threshold could efficiently improve nutrient absorption and stool patterns in healthy infants who cannot be breast-fed.


Nutrients | 2016

Temporal Changes of Protein Composition in Breast Milk of Chinese Urban Mothers and Impact of Caesarean Section Delivery

Michael Affolter; Clara Lucia Garcia-Rodenas; Gerard Vinyes-Pares; Rosemarie Jenni; Iris Roggero; Ornella Avanti-Nigro; Carlos Antonio De Castro; Ai Zhao; Yumei Zhang; Peiyu Wang; Sagar K. Thakkar; Laurent Favre

Human breast milk (BM) protein composition may be impacted by lactation stage or factors related to geographical location. The present study aimed at assessing the temporal changes of BM major proteins over lactation stages and the impact of mode of delivery on immune factors, in a large cohort of urban mothers in China. 450 BM samples, collected in three Chinese cities, covering 8 months of lactation were analyzed for α-lactalbumin, lactoferrin, serum albumin, total caseins, immunoglobulins (IgA, IgM and IgG) and transforming growth factor (TGF) β1 and β2 content by microfluidic chip- or ELISA-based quantitative methods. Concentrations and changes over lactation were aligned with previous reports. α-lactalbumin, lactoferrin, IgA, IgM and TGF-β1 contents followed similar variations characterized by highest concentrations in early lactation that rapidly decreased before remaining stable up to end of lactation. TGF-β2 content displayed same early dynamics before increasing again. Total caseins followed a different pattern, showing initial increase before decreasing back to starting values. Serum albumin and IgG levels appeared stable throughout lactation. In conclusion, BM content in major proteins of urban mothers in China was comparable with previous studies carried out in other parts of the world and C-section delivery had only very limited impact on BM immune factors.


Nutrients | 2016

Amino Acid Composition of Breast Milk from Urban Chinese Mothers

Clara Lucia Garcia-Rodenas; Michael Affolter; Gerard Vinyes-Pares; Carlos Antonio De Castro; Leonidas G. Karagounis; Yumei Zhang; Peiyu Wang; Sagar Thakkar

Human breast milk (BM) amino acid (AA) composition may be impacted by lactation stage or factors related to geographical location. The present cross-sectional study is aimed at assessing the temporal changes of BMAA over lactation stages in a large cohort of urban mothers in China. Four hundred fifty BM samples, collected in three Chinese cities covering eight months of lactation were analyzed for free (FAA) and total (TAA) AA by o-phthalaldehyde/ fluorenylmethylchloroformate (OPA/FMOC) derivatization. Concentrations and changes over lactation were aligned with previous reports. Both the sum and the individual TAA values significantly decreased during the first periods of lactation and then generally leveled off. Leucine and methionine were respectively the most and the least abundant indispensable amino acids across all the lactation stages, whereas glutamic acid + glutamine (Glx) was the most and cystine the least abundant dispensable AA. The contribution of FAA to TAA levels was less than 2%, except for free Glx, which was the most abundant FAA. In conclusion, the AA composition of the milk from our cohort of urban Chinese mothers was comparable to previous studies conducted in other parts of the world, suggesting that this is an evolutionary conserved trait largely independent of geographical, ethnic, or dietary factors.

Collaboration


Dive into the Clara Lucia Garcia-Rodenas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Beaufrere

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge