Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clara Serra-Juhé is active.

Publication


Featured researches published by Clara Serra-Juhé.


Molecular Psychiatry | 2010

Association of common copy number variants at the glutathione S -transferase genes and rare novel genomic changes with schizophrenia

Benjamín Rodríguez-Santiago; Anna Brunet; Beatriz Sobrino; Clara Serra-Juhé; R Flores; Ll Armengol; Elisabet Vilella; Elisabeth Gabau; Miriam Guitart; Roser Guillamat; Lourdes Martorell; Joaquín Valero; Alfonso Gutiérrez-Zotes; Antonio Labad; Angel Carracedo; Xavier Estivill; Luis A. Pérez-Jurado

Copy number variants (CNVs) are a substantial source of human genetic diversity, influencing the variable susceptibility to multifactorial disorders. Schizophrenia is a complex illness thought to be caused by a number of genetic and environmental effects, few of which have been clearly defined. Recent reports have found several low prevalent CNVs associated with the disease. We have used a multiplex ligation-dependent probe amplification-based (MLPA) method to target 140 previously reported and putatively relevant gene-containing CNV regions in 654 schizophrenic patients and 604 controls for association studies. Most genotyped CNVs (95%) showed very low (<1%) population frequency. A few novel rare variants were only present in patients suggesting a possible pathogenic involvement, including 1.39 Mb overlapping duplications at 22q11.23 found in two unrelated patients, and duplications of the somatostatin receptor 5 gene (SSTR5) at 16p13.3 in three unrelated patients. Furthermore, among the few relatively common CNVs observed in patients and controls, the combined analysis of gene copy number genotypes at two glutathione S-transferase (GST) genes, GSTM1 (glutathione S-transferase mu 1) (1p13.3) and GSTT2 (glutathione S-transferase theta 2) (22q11.23), showed a statistically significant association of non-null genotypes at both loci with an additive effect for increased vulnerability to schizophrenia (odds ratio of 1.92; P=0.0008). Our data provide complementary evidences for low prevalent, but highly penetrant chromosomal variants associated with schizophrenia, as well as for common CNVs that may act as susceptibility factors by disturbing glutathione metabolism.


Genome Research | 2013

The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome

M. Reza Sailani; Periklis Makrythanasis; Armand Valsesia; Federico Santoni; Samuel Deutsch; Konstantin Popadin; Christelle Borel; Eugenia Migliavacca; Andrew J. Sharp; Genevieve Duriaux Sail; Emilie Falconnet; Kelly Rabionet; Clara Serra-Juhé; Stefano Vicari; Daniela Laux; Yann Grattau; Guy Dembour; Andre Megarbane; Renaud Touraine; Samantha Stora; Sofia Kitsiou; Helena Fryssira; Chariklia Chatzisevastou-Loukidou; Emmanouel Kanavakis; Giuseppe Merla; Damien Bonnet; Luis A. Pérez-Jurado; Xavier Estivill; Jean Maurice Delabar

Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.


Embo Molecular Medicine | 2016

Mutations in pregnancy‐associated plasma protein A2 cause short stature due to low IGF‐I availability

Andrew Dauber; M.T. Muñoz-Calvo; Vicente Barrios; Horacio M. Domené; Søren Kløverpris; Clara Serra-Juhé; Vardhini Desikan; Jesús Pozo; Radhika Muzumdar; Gabriel Ángel Martos-Moreno; Federico Hawkins; Héctor G. Jasper; Cheryl A. Conover; Jan Frystyk; Shoshana Yakar; Vivian Hwa; Julie A. Chowen; Claus Oxvig; Ron G. Rosenfeld; Luis A. Pérez-Jurado; Jesús Argente

Mutations in multiple genes of the growth hormone/IGF‐I axis have been identified in syndromes marked by growth failure. However, no pathogenic human mutations have been reported in the six high‐affinity IGF‐binding proteins (IGFBPs) or their regulators, such as the metalloproteinase pregnancy‐associated plasma protein A2 (PAPP‐A2) that is hypothesized to increase IGF‐I bioactivity by specific proteolytic cleavage of IGFBP‐3 and ‐5. Multiple members of two unrelated families presented with progressive growth failure, moderate microcephaly, thin long bones, mildly decreased bone density and elevated circulating total IGF‐I, IGFBP‐3, and ‐5, acid labile subunit, and IGF‐II concentrations. Two different homozygous mutations in PAPPA2, p.D643fs25* and p.Ala1033Val, were associated with this novel syndrome of growth failure. In vitro analysis of IGFBP cleavage demonstrated that both mutations cause a complete absence of PAPP‐A2 proteolytic activity. Size‐exclusion chromatography showed a significant increase in IGF‐I bound in its ternary complex. Free IGF‐I concentrations were decreased. These patients provide important insights into the regulation of longitudinal growth in humans, documenting the critical role of PAPP‐A2 in releasing IGF‐I from its BPs.


Epigenetics | 2015

DNA methylation abnormalities in congenital heart disease

Clara Serra-Juhé; Ivon Cuscó; Aïda Homs; Raquel Flores; Nuria Toran; Luis A. Pérez-Jurado

Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.


PLOS ONE | 2012

Contribution of Rare Copy Number Variants to Isolated Human Malformations

Clara Serra-Juhé; Benjamín Rodríguez-Santiago; Ivon Cuscó; Teresa Vendrell; Núria Camats; Nuria Toran; Luis A. Pérez-Jurado

Background Congenital malformations are present in approximately 2–3% of liveborn babies and 20% of stillborn fetuses. The mechanisms underlying the majority of sporadic and isolated congenital malformations are poorly understood, although it is hypothesized that the accumulation of rare genetic, genomic and epigenetic variants converge to deregulate developmental networks. Methodology/Principal Findings We selected samples from 95 fetuses with congenital malformations not ascribed to a specific syndrome (68 with isolated malformations, 27 with multiple malformations). Karyotyping and Multiplex Ligation-dependent Probe Amplification (MLPA) discarded recurrent genomic and cytogenetic rearrangements. DNA extracted from the affected tissue (46%) or from lung or liver (54%) was analyzed by molecular karyotyping. Validations and inheritance were obtained by MLPA. We identified 22 rare copy number variants (CNV) [>100 kb, either absent (n = 7) or very uncommon (n = 15, <1/2,000) in the control population] in 20/95 fetuses with congenital malformations (21%), including 11 deletions and 11 duplications. One of the 9 tested rearrangements was de novo while the remaining were inherited from a healthy parent. The highest frequency was observed in fetuses with heart hypoplasia (8/17, 62.5%), with two events previously related with the phenotype. Double events hitting candidate genes were detected in two samples with brain malformations. Globally, the burden of deletions was significantly higher in fetuses with malformations compared to controls. Conclusions/Significance Our data reveal a significant contribution of rare deletion-type CNV, mostly inherited but also de novo, to human congenital malformations, especially heart hypoplasia, and reinforce the hypothesis of a multifactorial etiology in most cases.


PLOS ONE | 2012

A Novel Melanocortin-4 Receptor Mutation MC4R-P272L Associated with Severe Obesity Has Increased Propensity To Be Ubiquitinated in the ER in the Face of Correct Folding

Susana Granell; Clara Serra-Juhé; Gabriel Ángel Martos-Moreno; Francisca Díaz; Luis A. Pérez-Jurado; Giulia Baldini; Jesús Argente

Heterozygous mutations in the melanocortin-4 receptor (MC4R) gene represent the most frequent cause of monogenic obesity in humans. MC4R mutation analysis in a cohort of 77 children with morbid obesity identified previously unreported heterozygous mutations (P272L, N74I) in two patients inherited from their obese mothers. A rare polymorphism (I251L, allelic frequency: 1/100) reported to protect against obesity was found in another obese patient. When expressed in neuronal cells, the cell surface abundance of wild-type MC4R and of the N74I and I251L variants and the cAMP generated by these receptors in response to exposure to the agonist, α-MSH, were not different. Conversely, MC4R P272L was retained in the endoplasmic reticulum and had reduced cell surface expression and signaling (by ≈3-fold). The chemical chaperone PBA, which promotes protein folding of wild-type MC4R, had minimal effects on the distribution and signaling of the P272L variant. In contrast, incubation with UBE-41, a specific inhibitor of ubiquitin activating enzyme E1, inhibited ubiquitination of MC4R P272L and increased its cell surface expression and signaling to similar levels as wild-type MC4R. UBE41 had much less profound effects on MC4R I316S, another obesity-linked MC4R variant trapped in the ER. These data suggest that P272L is retained in the ER by a propensity to be ubiquitinated in the face of correct folding, which is only minimally shared by MC4R I316S. Thus, studies that combine clinical screening of obese patients and investigation of the functional defects of the obesity-linked MC4R variants can identify specific ways to correct these defects and are the first steps towards personalized medicine.


European Journal of Human Genetics | 2016

Development of a registration system for genetic counsellors and nurses in health-care services in Europe

Milena Paneque; Ramona Moldovan; Christophe Cordier; Clara Serra-Juhé; Irene Feroce; Debby Lambert; Inga Bjørnevoll; Heather Skirton

Development of a registration system for genetic counsellors and nurses in health-care services in Europe


PLOS Genetics | 2017

Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants

Clara Serra-Juhé; Gabriel Ángel Martos-Moreno; Francesc Bou de Pieri; Raquel Flores; Juan R. González; Benjamín Rodríguez-Santiago; Jesús Argente; Luis A. Pérez-Jurado

Obesity is a multifactorial disorder with high heritability (50–75%), which is probably higher in early-onset and severe cases. Although rare monogenic forms and several genes and regions of susceptibility, including copy number variants (CNVs), have been described, the genetic causes underlying the disease still remain largely unknown. We searched for rare CNVs (>100kb in size, altering genes and present in <1/2000 population controls) in 157 Spanish children with non-syndromic early-onset obesity (EOO: body mass index >3 standard deviations above the mean at <3 years of age) using SNP array molecular karyotypes. We then performed case control studies (480 EOO cases/480 non-obese controls) with the validated CNVs and rare sequence variants (RSVs) detected by targeted resequencing of selected CNV genes (n = 14), and also studied the inheritance patterns in available first-degree relatives. A higher burden of gain-type CNVs was detected in EOO cases versus controls (OR = 1.71, p-value = 0.0358). In addition to a gain of the NPY gene in a familial case with EOO and attention deficit hyperactivity disorder, likely pathogenic CNVs included gains of glutamate receptors (GRIK1, GRM7) and the X-linked gastrin-peptide receptor (GRPR), all inherited from obese parents. Putatively functional RSVs absent in controls were also identified in EOO cases at NPY, GRIK1 and GRPR. A patient with a heterozygous deletion disrupting two contiguous and related genes, SLCO4C1 and SLCO6A1, also had a missense RSV at SLCO4C1 on the other allele, suggestive of a recessive model. The genes identified showed a clear enrichment of shared co-expression partners with known genes strongly related to obesity, reinforcing their role in the pathophysiology of the disease. Our data reveal a higher burden of rare CNVs and RSVs in several related genes in patients with EOO compared to controls, and implicate NPY, GRPR, two glutamate receptors and SLCO4C1 in highly penetrant forms of familial obesity.


European Journal of Human Genetics | 2013

A Delphi study to determine the European core curriculum for Master programmes in genetic counselling.

Heather Skirton; Sivia Barnoy; Charlotta Ingvoldstad; Ingrid van Kessel; Christine Patch; Anita O'Connor; Clara Serra-Juhé; Barbara Stayner; Marie-Antoinette Voelckel

Genetic counsellors have been working in some European countries for at least 30 years. Although there are great disparities between the numbers, education, practice and acceptance of these professionals across Europe, it is evident that genetic counsellors and genetic nurses in Europe are working autonomously within teams to deliver patient care. The aim of this study was to use the Delphi research method to develop a core curriculum to guide the educational preparation of these professionals in Europe. The Delphi method enables the researcher to utilise the views and opinions of a group of recognised experts in the field of study; this study consisted of four phases. Phases 1 and 4 consisted of expert workshops, whereas data were collected in phases 2 and 3 (n=35) via online surveys. All participants in the study were considered experts in the field of genetic counselling. The topics considered essential for genetic counsellor training have been organised under the following headings: (1) counselling; (2) psychological issues; (3) medical genetics; (4) human genetics; (5) ethics, law and sociology; (6) professional practice; and (7) education and research. Each topic includes the knowledge, skills and attitudes required to enable genetic counsellors to develop competence. In addition, it was considered by the experts that clinical practice should comprise 50% of the educational programme. The core Master programme curriculum will enable current courses to be assessed and inform the design of future educational programmes for European genetic counsellors.


European Journal of Human Genetics | 2017

The perceived impact of the European registration system for genetic counsellors and nurses

Milena Paneque; Ramona Moldovan; Christophe Cordier; Clara Serra-Juhé; Irene Feroce; Sara Pasalodos; Emmanuelle Haquet; Debby Lambert; Inga Bjørnevoll; Heather Skirton

The aim of the European Board of Medical Genetics has been to develop and promote academic and professional standards necessary in order to provide competent genetic counselling services. The aim of this study was to explore the impact of the European registration system for genetic nurses and counsellors from the perspectives of those professionals who have registered. Registration system was launched in 2013. A cross-sectional, online survey was used to explore the motivations and experiences of those applying for, and the effect of registration on their career. Fifty-five Genetic Nurses and Counsellors are registered till now, from them, thirty-three agreed to participate on this study. The main motivations for registering were for recognition of their work value and competence (30.3%); due to the absence of a registration system in their own country (15.2%) and the possibility of obtaining a European/international certification (27.3%), while 27.3% of respondents registered to support recognition of the genetic counselling profession. Some participants valued the registration process as an educational activity in its own right, while the majority indicated the greatest impact of the registration process was on their clinical practice. The results confirm that registrants value the opportunity to both confirm their own competence and advance the genetic counselling profession in Europe.

Collaboration


Dive into the Clara Serra-Juhé's collaboration.

Top Co-Authors

Avatar

Luis A. Pérez-Jurado

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús Argente

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivon Cuscó

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debby Lambert

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Inga Bjørnevoll

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge