Luis A. Pérez-Jurado
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis A. Pérez-Jurado.
Genome Research | 2012
Augustin F. Fernandez; Yassen Assenov; José I. Martín-Subero; Balázs Bálint; Reiner Siebert; Hiroaki Taniguchi; Hiroyuki Yamamoto; Manuel Hidalgo; Aik Choon Tan; Oliver Galm; Isidre Ferrer; Montse Sanchez-Cespedes; Alberto Villanueva; Javier Carmona; Jose V. Sanchez-Mut; María Berdasco; Victor Moreno; Gabriel Capellá; David Monk; Esteban Ballestar; Santiago Ropero; Ramon Martinez; Marta Sanchez-Carbayo; Felipe Prosper; Xabier Agirre; Mario F. Fraga; Osvaldo Graña; Luis A. Pérez-Jurado; Jaume Mora; Susana Puig
Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases.
American Journal of Human Genetics | 2010
Benjamín Rodríguez-Santiago; Núria Malats; Nathaniel Rothman; Lluís Armengol; M Garcia-Closas; Manolis Kogevinas; Olaya Villa; Amy Hutchinson; Julie Earl; Gaëlle Marenne; Kevin B. Jacobs; Daniel Rico; Adonina Tardón; Alfredo Carrato; Gilles Thomas; Alfonso Valencia; Debra T. Silverman; Francisco X. Real; Stephen J. Chanock; Luis A. Pérez-Jurado
Mosaicism is defined as the coexistence of cells with different genetic composition within an individual, caused by postzygotic somatic mutation. Although somatic mosaicism for chromosomal abnormalities is a well-established cause of developmental and somatic disorders and has also been detected in different tissues, its frequency and extent in the adult normal population are still unknown. We provide here a genome-wide survey of mosaic genomic variation obtained by analyzing Illumina 1M SNP array data from blood or buccal DNA samples of 1991 adult individuals from the Spanish Bladder Cancer/EPICURO genome-wide association study. We found mosaic abnormalities in autosomes in 1.7% of samples, including 23 segmental uniparental disomies, 8 complete trisomies, and 11 large (1.5-37 Mb) copy-number variants. Alterations were observed across the different autosomes with recurrent events in chromosomes 9 and 20. No case-control differences were found in the frequency of events or the percentage of cells affected, thus indicating that most rearrangements found are not central to the development of bladder cancer. However, five out of six events tested were detected in both blood and bladder tissue from the same individual, indicating an early developmental origin. The high cellular frequency of the anomalies detected and their presence in normal adult individuals suggest that this type of mosaicism is a widespread phenomenon in the human genome. Somatic mosaicism should be considered in the expanding repertoire of inter- and intraindividual genetic variation, some of which may cause somatic human diseases but also contribute to modifying inherited disorders and/or late-onset multifactorial traits.
Human Molecular Genetics | 2009
Ivon Cuscó; Andrés Medrano; Blanca Gener; Mireia Vilardell; Fátima Gallastegui; Olaya Villa; Eva González; Benjamín Rodríguez-Santiago; Elisabet Vilella; Miguel del Campo; Luis A. Pérez-Jurado
Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.
PLOS ONE | 2009
Vanesa Álvarez-Iglesias; Ana Mosquera-Miguel; María Cerezo; Beatriz Quintáns; María T. Zarrabeitia; Ivon Cuscó; Maria Victoria Lareu; O. Garcia; Luis A. Pérez-Jurado; Angel Carracedo; Antonio Salas
Background R0 embraces the most common mitochondrial DNA (mtDNA) lineage in West Eurasia, namely, haplogroup H (∼40%). R0 sub-lineages are badly defined in the control region and therefore, the analysis of diagnostic coding region polymorphisms is needed in order to gain resolution in population and medical studies. Methodology/Principal Findings We sequenced the first hypervariable segment (HVS-I) of 518 individuals from different North Iberian regions. The mtDNAs belonging to R0 (∼57%) were further genotyped for a set of 71 coding region SNPs characterizing major and minor branches of R0. We found that the North Iberian Peninsula shows moderate levels of population stratification; for instance, haplogroup V reaches the highest frequency in Cantabria (north-central Iberia), but lower in Galicia (northwest Iberia) and Catalonia (northeast Iberia). When compared to other European and Middle East populations, haplogroups H1, H3 and H5a show frequency peaks in the Franco-Cantabrian region, declining from West towards the East and South Europe. In addition, we have characterized, by way of complete genome sequencing, a new autochthonous clade of haplogroup H in the Basque country, named H2a5. Its coalescence age, 15.6±8 thousand years ago (kya), dates to the period immediately after the Last Glacial Maximum (LGM). Conclusions/Significance In contrast to other H lineages that experienced re-expansion outside the Franco-Cantabrian refuge after the LGM (e.g. H1 and H3), H2a5 most likely remained confined to this area till present days.
Human Mutation | 2013
Gijs W.E. Santen; Emmelien Aten; Anneke T. Vulto-van Silfhout; Caroline Pottinger; Bregje W.M. Bon; Ivonne J.H.M. Minderhout; Ronelle Snowdowne; Christian A.C. Lans; Merel W. Boogaard; Margot M.L. Linssen; Linda Vijfhuizen; Michiel J.R. Wielen; M.J. (Ellen) Vollebregt; Martijn H. Breuning; Marjolein Kriek; Arie van Haeringen; Johan T. den Dunnen; Alexander Hoischen; Jill Clayton-Smith; Bert B.A. Vries; Raoul C. M. Hennekam; Martine J. van Belzen; Mariam Almureikhi; Anwar Baban; Mafalda Barbosa; Tawfeg Ben-Omran; Katherine Berry; Stefania Bigoni; Odile Boute; Louise Brueton
De novo germline variants in several components of the SWI/SNF‐like BAF complex can cause Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD‐powered databases to facilitate further genotype–phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype–genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.
Journal of Medical Genetics | 2010
Anna Antonell; M Del Campo; Luis F. Magano; L Kaufmann; J Martínez de la Iglesia; Fátima Gallastegui; Raquel Flores; U Schweigmann; C Fauth; D Kotzot; Luis A. Pérez-Jurado
Background Williams–Beuren syndrome (WBS) is a developmental disorder with multisystemic manifestations mainly characterised by vascular stenoses, distinctive craniofacial features, mental retardation with a characteristic neurocognitive profile, and some endocrine and connective tissue abnormalities, caused by a recurrent deletion of 1.55 Mb including 26–28 genes at chromosomal region 7q11.23. The analysis of clinical–molecular correlations in a few reported atypical patients has been useful to propose several deleted genes as main contributors to specific aspects of the WBS phenotype. Patients and methods Two additional families with partial phenotypes and atypical 7q11.23 deletions were studied. Deletions were precisely defined at the nucleotide level, and the expression levels of some affected and flanking genes were assessed in lymphoblastoid cell lines. Results Affected individuals presented variable cardiovascular and connective tissue manifestations, subtle craniofacial features, normal visuospatial construction abilities with low average IQ and no endocrine abnormalities. The deletion in family NW1 encompassed 817 kb with 11 genes (CLDN3–GTF2IRD1), and 610 kb with 14 genes (VPS37D–RFC2) in family NW2. All deleted genes in typical and atypical deletions revealed low expression levels in lymphoblastoid cell lines, except for GTF2IRD1. CLIP2 was also underexpressed in all patients despite being outside the deletion in NW2, while no other flanking non-deleted gene showed significantly different expression compared to controls. Conclusions Along with previously reported cases, clinical–molecular correlations in these two families further confirm that the functional hemizygosity for the GTF2I and GTF2IRD1 genes is the main cause of the neurocognitive profile and some aspects of the gestalt phenotype of WBS.
BMC Genomics | 2011
Mireia Vilardell; Axel Rasche; Anja Thormann; Elisabeth Maschke-Dutz; Luis A. Pérez-Jurado; Hans Lehrach; Ralf Herwig
BackgroundDown syndrome (DS; trisomy 21) is the most common genetic cause of mental retardation in the human population and key molecular networks dysregulated in DS are still unknown. Many different experimental techniques have been applied to analyse the effects of dosage imbalance at the molecular and phenotypical level, however, currently no integrative approach exists that attempts to extract the common information.ResultsWe have performed a statistical meta-analysis from 45 heterogeneous publicly available DS data sets in order to identify consistent dosage effects from these studies. We identified 324 genes with significant genome-wide dosage effects, including well investigated genes like SOD1, APP, RUNX1 and DYRK1A as well as a large proportion of novel genes (N = 62). Furthermore, we characterized these genes using gene ontology, molecular interactions and promoter sequence analysis. In order to judge relevance of the 324 genes for more general cerebral pathologies we used independent publicly available microarry data from brain studies not related with DS and identified a subset of 79 genes with potential impact for neurocognitive processes. All results have been made available through a web server under http://ds-geneminer.molgen.mpg.de/.ConclusionsOur study represents a comprehensive integrative analysis of heterogeneous data including genome-wide transcript levels in the domain of trisomy 21. The detected dosage effects build a resource for further studies of DS pathology and the development of new therapies.
Genome Research | 2008
Ivon Cuscó; Roser Corominas; Mònica Bayés; Raquel Flores; Núria Rivera-Brugués; Victoria Campuzano; Luis A. Pérez-Jurado
Large copy number variants (CNVs) have been recently found as structural polymorphisms of the human genome of still unknown biological significance. CNVs are significantly enriched in regions with segmental duplications or low-copy repeats (LCRs). Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of contiguous genes at 7q11.23 mediated by nonallelic homologous recombination (NAHR) between large flanking LCRs and facilitated by a structural variant of the region, a approximately 2-Mb paracentric inversion present in 20%-25% of WBS-transmitting progenitors. We now report that eight out of 180 (4.44%) WBS-transmitting progenitors are carriers of a CNV, displaying a chromosome with large deletion of LCRs. The prevalence of this CNV among control individuals and non-transmitting progenitors is much lower (1%, n=600), thus indicating that it is a predisposing factor for the WBS deletion (odds ratio 4.6-fold, P= 0.002). LCR duplications were found in 2.22% of WBS-transmitting progenitors but also in 1.16% of controls, which implies a non-statistically significant increase in WBS-transmitting progenitors. We have characterized the organization and breakpoints of these CNVs, encompassing approximately 100-300 kb of genomic DNA and containing several pseudogenes but no functional genes. Additional structural variants of the region have also been defined, all generated by NAHR between different blocks of segmental duplications. Our data further illustrate the highly dynamic structure of regions rich in segmental duplications, such as the WBS locus, and indicate that large CNVs can act as susceptibility alleles for disease-associated genomic rearrangements in the progeny.
Molecular Psychiatry | 2010
Benjamín Rodríguez-Santiago; Anna Brunet; Beatriz Sobrino; Clara Serra-Juhé; R Flores; Ll Armengol; Elisabet Vilella; Elisabeth Gabau; Miriam Guitart; Roser Guillamat; Lourdes Martorell; Joaquín Valero; Alfonso Gutiérrez-Zotes; Antonio Labad; Angel Carracedo; Xavier Estivill; Luis A. Pérez-Jurado
Copy number variants (CNVs) are a substantial source of human genetic diversity, influencing the variable susceptibility to multifactorial disorders. Schizophrenia is a complex illness thought to be caused by a number of genetic and environmental effects, few of which have been clearly defined. Recent reports have found several low prevalent CNVs associated with the disease. We have used a multiplex ligation-dependent probe amplification-based (MLPA) method to target 140 previously reported and putatively relevant gene-containing CNV regions in 654 schizophrenic patients and 604 controls for association studies. Most genotyped CNVs (95%) showed very low (<1%) population frequency. A few novel rare variants were only present in patients suggesting a possible pathogenic involvement, including 1.39 Mb overlapping duplications at 22q11.23 found in two unrelated patients, and duplications of the somatostatin receptor 5 gene (SSTR5) at 16p13.3 in three unrelated patients. Furthermore, among the few relatively common CNVs observed in patients and controls, the combined analysis of gene copy number genotypes at two glutathione S-transferase (GST) genes, GSTM1 (glutathione S-transferase mu 1) (1p13.3) and GSTT2 (glutathione S-transferase theta 2) (22q11.23), showed a statistically significant association of non-null genotypes at both loci with an additive effect for increased vulnerability to schizophrenia (odds ratio of 1.92; P=0.0008). Our data provide complementary evidences for low prevalent, but highly penetrant chromosomal variants associated with schizophrenia, as well as for common CNVs that may act as susceptibility factors by disturbing glutathione metabolism.
Human Mutation | 2011
Gaëlle Marenne; Benjamín Rodríguez-Santiago; Montserrat García Closas; Luis A. Pérez-Jurado; Nathaniel Rothman; Daniel Rico; Guillermo Pita; David G. Pisano; Manolis Kogevinas; Debra T. Silverman; Alfonso Valencia; Francisco X. Real; Stephen J. Chanock; Emmanuelle Génin; Núria Malats
High‐throughput single nucleotide polymorphism (SNP)‐array technologies allow to investigate copy number variants (CNVs) in genome‐wide scans and specific calling algorithms have been developed to determine CNV location and copy number. We report the results of a reliability analysis comparing data from 96 pairs of samples processed with CNVpartition, PennCNV, and QuantiSNP for Infinium Illumina Human 1Million probe chip data. We also performed a validity assessment with multiplex ligation‐dependent probe amplification (MLPA) as a reference standard. The number of CNVs per individual varied according to the calling algorithm. Higher numbers of CNVs were detected in saliva than in blood DNA samples regardless of the algorithm used. All algorithms presented low agreement with mean Kappa Index (KI) <66. PennCNV was the most reliable algorithm (KIw=98.96) when assessing the number of copies. The agreement observed in detecting CNV was higher in blood than in saliva samples. When comparing to MLPA, all algorithms identified poorly known copy aberrations (sensitivity = 0.19–0.28). In contrast, specificity was very high (0.97–0.99). Once a CNV was detected, the number of copies was truly assessed (sensitivity >0.62). Our results indicate that the current calling algorithms should be improved for high performance CNV analysis in genome‐wide scans. Further refinement is required to assess CNVs as risk factors in complex diseases.Hum Mutat 32:1–10, 2011.