Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare Ling is active.

Publication


Featured researches published by Clare Ling.


Thorax | 2005

Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care.

Dean Creer; Jp Dilworth; Stephen H. Gillespie; Ar Johnston; Sebastian L. Johnston; Clare Ling; S Patel; G Sanderson; Pg Wallace; Timothy D. McHugh

Background: Lower respiratory tract infections (LRTI) are a common reason for consulting general practitioners (GPs). In most cases the aetiology is unknown, yet most result in an antibiotic prescription. The aetiology of LRTI was investigated in a prospective controlled study. Methods: Eighty adults presenting to GPs with acute LRTI were recruited together with 49 controls over 12 months. Throat swabs, nasal aspirates (patients and controls), and sputum (patients) were obtained and polymerase chain reaction (PCR) and reverse transcriptase polymerase chain reaction (RT-PCR) assays were used to detect Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila, influenza viruses (AH1, AH3 and B), parainfluenza viruses 1–3, coronaviruses, respiratory syncytial virus, adenoviruses, rhinoviruses, and enteroviruses. Standard sputum bacteriology was also performed. Outcome was recorded at a follow up visit. Results: Potential pathogens were identified in 55 patients with LRTI (69%) and seven controls (14%; p<0.0001). The identification rate was 63% (viruses) and 26% (bacteria) for patients and 12% (p<0.0001) and 6% (p = 0.013), respectively, for controls. The most common organisms identified in the patients were rhinoviruses (33%), influenza viruses (24%), and Streptococcus pneumoniae (19%) compared with 2% (p<0.001), 6% (p = 0.013), and 4% (p = 0.034), respectively, in controls. Multiple pathogens were identified in 18 of the 80 LRTI patients (22.5%) and in two of the 49 controls (4%; p = 0.011). Atypical organisms were rarely identified. Cases with bacterial aetiology were clinically indistinguishable from those with viral aetiology. Conclusion: Patients presenting to GPs with acute adult LRTI predominantly have a viral illness which is most commonly caused by rhinoviruses and influenza viruses.


Clinical Infectious Diseases | 2016

Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors

Aung Pyae Phyo; Elizabeth A. Ashley; Timothy J. C. Anderson; Zbynek Bozdech; Verena I. Carrara; Kanlaya Sriprawat; Shalini Nair; Marina White; Jerzy Dziekan; Clare Ling; Stephane Proux; Kamonchanok Konghahong; Atthanee Jeeyapant; Charles J. Woodrow; Mallika Imwong; Rose McGready; Khin Maung Lwin; Nicholas P. J. Day; Nicholas J. White; François Nosten

The pivotal factor leading to the declining efficacy of the artemisinin-based combination on the Thailand–Myanmar border (mefloquine–artesunate) to a clinically unacceptable level is the increasing local prevalence of K13 mutations superimposed onto a long-standing background of Pfmdr1 amplification.


PLOS ONE | 2016

Single Low Dose Primaquine (0.25mg/kg) Does Not Cause Clinically Significant Haemolysis in G6PD Deficient Subjects

Germana Bancone; Nongnud Chowwiwat; Raweewan Somsakchaicharoen; Lalita Poodpanya; Paw Khu Moo; Gornpan Gornsawun; Ladda Kajeechiwa; May Myo Thwin; Santisuk Rakthinthong; Suphak Nosten; Suradet Thinraow; Slight Naw Nyo; Clare Ling; Jacher Wiladphaingern; Naw Lily Kiricharoen; Kerryn A. Moore; Nicholas J. White; François Nosten

Background Primaquine is the only drug consistently effective against mature gametocytes of Plasmodium falciparum. The transmission blocking dose of primaquine previously recommended was 0.75mg/kg (adult dose 45mg) but its deployment was limited because of concerns over haemolytic effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. G6PD deficiency is an inherited X-linked enzymatic defect that affects an estimated 400 million people around the world with high frequencies (15–20%) in populations living in malarious areas. To reduce transmission in low transmission settings and facilitate elimination of P. falciparum, the World Health Organization now recommends adding a single dose of 0.25mg/kg (adult dose 15mg) to Artemisinin-based Combination Therapies (ACTs) without G6PD testing. Direct evidence of the safety of this low dose is lacking. Adverse events and haemoglobin variations after this treatment were assessed in both G6PD normal and deficient subjects in the context of targeted malaria elimination in a malaria endemic area on the North-Western Myanmar-Thailand border where prevalence of G6PD deficiency (Mahidol variant) approximates 15%. Methods and Findings The tolerability and safety of primaquine (single dose 0.25 mg base/kg) combined with dihydroartemisinin-piperaquine (DHA-PPQ) given three times at monthly intervals was assessed in 819 subjects. Haemoglobin concentrations were estimated over the six months preceding the ACT + primaquine rounds of mass drug administration. G6PD deficiency was assessed with a phenotypic test and genotyping was performed in male subjects with deficient phenotypes and in all females. Fractional haemoglobin changes in relation to G6PD phenotype and genotype and primaquine round were assessed using linear mixed-effects models. No adverse events related to primaquine were reported during the trial. Mean fractional haemoglobin changes after each primaquine treatment in G6PD deficient subjects (-5.0%, -4.2% and -4.7%) were greater than in G6PD normal subjects (0.3%, -0.8 and -1.7%) but were clinically insignificant. Fractional drops in haemoglobin concentration larger than 25% following single dose primaquine were observed in 1.8% of the population but were asymptomatic. Conclusions The single low dose (0.25mg/kg) of primaquine is clinically well tolerated and can be used safely without prior G6PD testing in populations with high prevalence of G6PD deficiency. The present evidence supports a broader use of low dose primaquine without G6PD testing for the treatment and elimination of falciparum malaria. Trial Registration ClinicalTrials.gov NCT01872702


Journal of Medical Microbiology | 2012

Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice

Claire Jenkins; Clare Ling; Holly Ciesielczuk; Julianne Lockwood; Susan Hopkins; Timothy D. McHugh; Stephen H. Gillespie; Christopher C. Kibbler

Amplification and sequence analysis of the 16S rRNA gene can be applied to detect and identify bacteria in clinical samples. We examined 75 clinical samples (17 culture-positive, 58 culture-negative) prospectively by two different PCR protocols, amplifying either a single fragment (1343 bp) or two fragments (762/598 bp) of the 16S rRNA gene. The 1343 bp PCR and 762/598 bp PCRs detected and identified the bacterial 16S rRNA gene in 23 (31 %) and 38 (51 %) of the 75 samples, respectively. The 1343 bp PCR identified 19 of 23 (83 %) PCR-positive samples to species level while the 762/598 bp PCR identified 14 of 38 (37 %) bacterial 16S rRNA gene fragments to species level and 24 to the genus level only. Amplification of shorter fragments of the bacterial 16S rRNA gene (762 and 598 bp) resulted in a more sensitive assay; however, analysis of a large fragment (1343 bp) improved species discrimination. Although not statistically significant, the 762/598 bp PCR detected the bacterial 16S rRNA gene in more samples than the 1343 bp PCR, making it more likely to be a more suitable method for the primary detection of the bacterial 16S rRNA gene in the clinical setting. The 1343 bp PCR may be used in combination with the 762/598 bp PCR when identification of the bacterial rRNA gene to species level is required.


Expert Opinion on Drug Safety | 2016

Revisiting doxycycline in pregnancy and early childhood – time to rebuild its reputation?

Ruby Cross; Clare Ling; Nicholas P. J. Day; Rose McGready; Daniel H. Paris

ABSTRACT Introduction: Doxycycline is highly effective, inexpensive with a broad therapeutic spectrum and exceptional bioavailability. However these benefits have been overshadowed by its classification alongside the tetracyclines – class D drugs, contraindicated in pregnancy and in children under 8 years of age. Doxycycline-treatable diseases are emerging as leading causes of undifferentiated febrile illness in Southeast Asia. For example scrub typhus and murine typhus have an unusually severe impact on pregnancy outcomes, and current mortality rates for scrub typhus reach 12-13% in India and Thailand. The emerging evidence for these important doxycycline-treatable diseases prompted us to revisit doxycycline usage in pregnancy and childhood. Areas Covered: A systematic review of the available literature on doxycycline use in pregnant women and children revealed a safety profile of doxycycline that differed significantly from that of tetracycline; no correlation between the use of doxycycline and teratogenic effects during pregnancy or dental staining in children was found. Expert Opinion: The change of the US FDA pregnancy classification scheme to an evidence-based approach will enable adequate evaluation of doxycycline in common tropical illnesses and in vulnerable populations in clinical treatment trials, dosage-optimization pharmacokinetic studies and for the empirical treatment of undifferentiated febrile illnesses, especially in pregnant women and children.


PLOS Neglected Tropical Diseases | 2014

An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

Jeslin J. L. Tan; Monica Capozzoli; Mitsuharu Sato; Wanitda Watthanaworawit; Clare Ling; Marjorie Mauduit; Benoı̂t Malleret; Anne-Charlotte Grüner; Rosemary Tan; François Nosten; Georges Snounou; Laurent Rénia; Lisa F. P. Ng

Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.


PLOS Neglected Tropical Diseases | 2014

Pregnancy Outcome in Relation to Treatment of Murine Typhus and Scrub Typhus Infection: A Fever Cohort and a Case Series Analysis

Rose McGready; John Antony Jude Prakash; Santosh Joseph Benjamin; Wanitda Watthanaworawit; Tippawan Anantatat; Ampai Tanganuchitcharnchai; Clare Ling; Saw Oo Tan; Elizabeth A. Ashley; Mupawjay Pimanpanarak; Stuart D. Blacksell; Nicholas P. J. Day; Pratap Singhasivanon; Nicholas J. White; François Nosten; Daniel H. Paris

Background There is a paucity of published reports on pregnancy outcome following scrub and murine typhus despite these infections being leading causes of undifferentiated fever in Asia. This study aimed to relate pregnancy outcome with treatment of typhus. Methodology/Principal Findings Data were analyzed from: i) pregnant women with a diagnosis of scrub and/or murine typhus from a fever cohort studies; ii) case series of published studies in PubMed using the search terms “scrub typhus” (ST), “murine typhus” (MT), “Orientia tsutsugamushi”, “Rickettsia tsutsugamushi”, “Rickettsia typhi”, “rickettsiae”, “typhus”, or “rickettsiosis”; and “pregnancy”, until February 2014 and iii) an unpublished case series. Fever clearance time (FCT) and pregnancy outcome (miscarriage and delivery) were compared to treatment. Poor neonatal outcome was a composite measure for pregnancies sustained to 28 weeks or more of gestation ending in stillbirth, preterm birth, or delivery of a growth restricted or low birth weight newborn. Results There were 26 women in the fever cohort. MT and ST were clinically indistinguishable apart from two ST patients with eschars. FCTs (median [range] hours) were 25 [16–42] for azithromycin (n = 5), 34 [20–53] for antimalarials (n = 5) and 92 [6–260] for other antibiotics/supportive therapy (n = 16). There were 36.4% (8/22) with a poor neonatal outcome. In 18 years, 97 pregnancies were collated, 82 with known outcomes, including two maternal deaths. Proportions of miscarriage 17.3% (14/81) and poor neonatal outcomes 41.8% (28/67) were high, increasing with longer FCTs (p = 0.050, linear trend). Use of azithromycin was not significantly associated with improved neonatal outcomes (p = 0.610) Conclusion The published ST and MT world literature amounts to less than 100 pregnancies due to under recognition and under diagnosis. Evidence supporting the most commonly used treatment, azithromycin, is weak. Collaborative, prospective clinical trials in pregnant women are urgently required to reduce the burden of adverse maternal and newborn outcomes and to determine the safety and efficacy of antimicrobial treatment.


American Journal of Tropical Medicine and Hygiene | 2017

Performance of a High-Sensitivity Rapid Diagnostic Test for Plasmodium falciparum Malaria in Asymptomatic Individuals from Uganda and Myanmar and Naive Human Challenge Infections

Smita Das; Ihn Kyung Jang; Becky Barney; Roger Peck; John Rek; Emmanuel Arinaitwe; Harriet Adrama; Maxwell Murphy; Mallika Imwong; Clare Ling; Stephane Proux; Warat Haohankhunnatham; Melissa Rist; Annette M. Seilie; Amelia E. Hanron; Glenda Daza; Ming Chang; Tomoka Nakamura; Michael Kalnoky; Paul LaBarre; Sean C. Murphy; James S. McCarthy; François Nosten; Bryan Greenhouse; Sophie Allauzen; Gonzalo J. Domingo

Abstract. Sensitive field-deployable diagnostic tests can assist malaria programs in achieving elimination. The performance of a new Alere™ Malaria Ag P.f Ultra Sensitive rapid diagnostic test (uRDT) was compared with the currently available SD Bioline Malaria Ag P.f RDT in blood specimens from asymptomatic individuals in Nagongera, Uganda, and in a Karen Village, Myanmar, representative of high- and low-transmission areas, respectively, as well as in pretreatment specimens from study participants from four Plasmodium falciparum-induced blood-stage malaria (IBSM) studies. A quantitative reverse transcription PCR (qRT-PCR) and a highly sensitive enzyme-linked immunosorbent assay (ELISA) test for histidine-rich protein II (HRP2) were used as reference assays. The uRDT showed a greater than 10-fold lower limit of detection for HRP2 compared with the RDT. The sensitivity of the uRDT was 84% and 44% against qRT-PCR in Uganda and Myanmar, respectively, and that of the RDT was 62% and 0% for the same two sites. The specificities of the uRDT were 92% and 99.8% against qRT-PCR for Uganda and Myanmar, respectively, and 99% and 99.8% against the HRP2 reference ELISA. The RDT had specificities of 95% and 100% against qRT-PCR for Uganda and Myanmar, respectively, and 96% and 100% against the HRP2 reference ELISA. The uRDT detected new infections in IBSM study participants 1.5 days sooner than the RDT. The uRDT has the same workflow as currently available RDTs, but improved performance characteristics to identify asymptomatic malaria infections. The uRDT may be a useful tool for malaria elimination strategies.


Wellcome Open Research | 2017

Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: A pilot trial in four villages of Eastern Myanmar.

Jordi Landier; Ladda Kajeechiwa; May Myo Thwin; Daniel M. Parker; Chaumeau; Jacher Wiladphaingern; Mallika Imwong; Olivo Miotto; Krittaya Patumrat; Jureeporn Duanguppama; Dominique Cerqueira; Benoit Malleret; Laurent Rénia; Suphak Nosten; L von Seidlein; Clare Ling; Stephane Proux; Julie A. Simpson; Arjen M. Dondorp; Nicholas J. White; François Nosten

Background: Artemisinin and partner drug-resistant falciparum malaria is expanding over the Greater Mekong Sub-region (GMS). Eliminating falciparum malaria in the GMS while drugs still retain enough efficacy could prevent global spread of antimalarial resistance. Eliminating malaria rapidly requires targeting the reservoir of asymptomatic parasite carriers. This pilot trial aimed to evaluate the acceptability, safety, feasibility and effectiveness of mass-drug administration (MDA) in reducing malaria in four villages in Eastern Myanmar. Methods: Villages with ≥30% malaria prevalence were selected. Long-lasting insecticidal bednets (LLINs) and access to malaria early diagnosis and treatment (EDT) were provided. Two villages received MDA immediately and two were followed for nine months pre-MDA. MDA consisted of a 3-day supervised course of dihydroartemisinin-piperaquine and single low-dose primaquine administered monthly for three months. Adverse events (AE) were monitored by interviews and consultations. Malaria prevalence was assessed by ultrasensitive PCR quarterly for 24 months. Symptomatic malaria incidence,entomological indices, and antimalarial resistance markers were monitored. Results: MDA was well tolerated. There were no serious AE and mild to moderate AE were reported in 5.6%(212/3931) interviews. In the smaller villages, participation to three MDA courses was 61% and 57%, compared to 28% and 29% in the larger villages. Baseline prevalence was higher in intervention than in control villages (18.7% (95%CI=16.1-21.6) versus 6.8%(5.2-8.7), p<0.0001) whereas three months after starting MDA, prevalence was lower in intervention villages (0.4%(0.04-1.3) versus 2.7%(1.7-4.1), p=0.0014). After nine months the difference was no longer significant (2.0%(1.0-3.5) versus 0.9%(0.04-1.8), p=0.10). M0-M9 symptomatic falciparum incidence was similar between intervention and control. Before/after MDA comparisons showed that asymptomatic P. falciparum carriage and anopheline vector positivity decreased significantly whereas prevalence of the artemisinin-resistance molecular marker remained stable. Conclusions: This MDA was safe and feasible, and, could accelerate elimination of P. falciparum in addition to EDT and LLINs when community participation was sufficient.


The Lancet | 2018

Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional elimination programme

Jordi Landier; Daniel M. Parker; Aung Myint Thu; Khin Maung Lwin; Gilles Delmas; François Nosten; Chiara Andolina; Ricardo Aguas; Saw Moe Ang; Ei Phyo Aung; Naw Baw Baw; Saw Aye Be; Saw B'Let; Hay Bluh; Craig A. Bonnington; Victor Chaumeau; Miasa Chirakiratinant; Win Cho Cho; Peter R. Christensen; Vincent Corbel; Nicholas P. J. Day; Saw Hsa Dah; Mehul Dhorda; Arjen M. Dondorp; Jean Gaudart; Gornpan Gornsawun; Warat Haohankhunnatham; Saw Kyaw Hla; Saw Nay Hsel; Saw Nay Htoo

Summary Background Potentially untreatable Plasmodium falciparum malaria threatens the Greater Mekong subregion. A previous series of pilot projects in Myanmar, Laos, Cambodia, and Vietnam suggested that mass drug administration was safe, and when added to provision of early diagnosis and treatment, could reduce the reservoir of P falciparum and interrupts transmission. We examined the effects of a scaled-up programme of this strategy in four townships of eastern Myanmar on the incidence of P falciparum malaria. Methods The programme was implemented in the four townships of Myawaddy, Kawkareik, Hlaingbwe, and Hpapun in Kayin state, Myanmar. Increased access to early diagnosis and treatment of malaria was provided to all villages through community-based malaria posts equipped with rapid diagnostic tests, and treatment with artemether–lumefantrine plus single low-dose primaquine. Villages were identified as malarial hotspots (operationally defined as >40% malaria, of which 20% was P falciparum) with surveys using ultrasensitive quantitative PCR either randomly or targeted at villages where the incidence of clinical cases of P falciparum malaria remained high (ie, >100 cases per 1000 individuals per year) despite a functioning malaria post. During each survey, a 2 mL sample of venous blood was obtained from randomly selected adults. Hotspots received targeted mass drug administration with dihydroartemisinin–piperaquine plus single-dose primaquine once per month for 3 consecutive months in addition to the malaria posts. The main outcome was the change in village incidence of clinical P falciparum malaria, quantified using a multivariate, generalised, additive multilevel model. Malaria prevalence was measured in the hotspots 12 months after mass drug administration. Findings Between May 1, 2014, and April 30, 2017, 1222 malarial posts were opened, providing early diagnosis and treatment to an estimated 365 000 individuals. Incidence of P falciparum malaria decreased by 60 to 98% in the four townships. 272 prevalence surveys were undertaken and 69 hotspot villages were identified. By April 2017, 50 hotspots were treated with mass drug administration. Hotspot villages had a three times higher incidence of P falciparum at malarial posts than neighbouring villages (adjusted incidence rate ratio [IRR] 2·7, 95% CI 1·8–4·4). Early diagnosis and treatment was associated with a significant decrease in P falciparum incidence in hotspots (IRR 0·82, 95% CI 0·76–0·88 per quarter) and in other villages (0·75, 0·73–0·78 per quarter). Mass drug administration was associated with a five-times decrease in P falciparum incidence within hotspot villages (IRR 0·19, 95% CI 0·13–0·26). By April, 2017, 965 villages (79%) of 1222 corresponding to 104 village tracts were free from P falciparum malaria for at least 6 months. The prevalence of wild-type genotype for K13 molecular markers of artemisinin resistance was stable over the three years (39%; 249/631). Interpretation Providing early diagnosis and effective treatment substantially decreased village-level incidence of artemisinin-resistant P falciparum malaria in hard-to-reach, politically sensitive regions of eastern Myanmar. Targeted mass drug administration significantly reduced malaria incidence in hotspots. If these activities could proceed in all contiguous endemic areas in addition to standard control programmes already implemented, there is a possibility of subnational elimination of P falciparum. Funding The Bill & Melinda Gates Foundation, the Regional Artemisinin Initiative (Global Fund against AIDS, Tuberculosis and Malaria), and the Wellcome Trust.

Collaboration


Dive into the Clare Ling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy D. McHugh

Royal Free London NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge