Clare M. Turner
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clare M. Turner.
Cells Tissues Organs | 2003
Clare M. Turner; Oliver Vonend; Choong M. Chan; Geoffrey Burnstock; Robert J. Unwin
Using immunohistological techniques and available polyclonal antibodies, we have identified several ATP-sensitive P2 receptor subtypes in specific structures of the normal rat kidney. Of the P2 receptor subtypes examined, P2X1, P2X2 and P2Y1 receptors were found in the smooth muscle layer of intrarenal vessels. The P2Y1 receptor was also found on glomerular mesangial cells, the brush border membrane of the proximal straight tubule and on peritubular fibroblasts. In the cortex, P2Y4 receptors were found on the tubule epithelium of the proximal convoluted tubule, and P2Y2 receptors on glomerular epithelial cells (podocytes). P2X4 and P2X6 receptors were present throughout the renal tubule epithelium from the proximal tubule to the collecting duct. P2X5 receptors were expressed on medullary collecting duct cells and the apical membrane of the S3 segment of the proximal tubule. Possible functions of these receptor subtypes in normal rat kidney are discussed.
Journal of The American Society of Nephrology | 2009
Simon Rj Taylor; Clare M. Turner; James I. Elliott; John P. McDaid; Reiko Hewitt; Jennifer A. Smith; Matthew C. Pickering; Darren L. Whitehouse; H. Terence Cook; Geoffrey Burnstock; Charles D. Pusey; Robert J. Unwin; Frederick W.K. Tam
The P2X7 receptor is a ligand-gated cation channel that is normally expressed by a variety of immune cells, including macrophages and lymphocytes. Because it leads to membrane blebbing, release of IL-1beta, and cell death by apoptosis or necrosis, it is a potential therapeutic target for a variety of inflammatory diseases. Although the P2X7 receptor is usually not detectable in normal renal tissue, we previously reported increased expression of both mRNA and protein in mesangial cells and macrophages infiltrating the glomeruli in animal models of antibody-mediated glomerulonephritis. In this study, we used P2X7-knockout mice in the same experimental model of glomerulonephritis and found that P2X7 deficiency was significantly renoprotective compared with wild-type controls, evidenced by better renal function, a striking reduction in proteinuria, and decreased histologic glomerular injury. In addition, the selective P2X7 antagonist A-438079 prevented the development of antibody-mediated glomerulonephritis in rats. These results support a proinflammatory role for P2X7 in immune-mediated renal injury and suggest that the P2X7 receptor is a potential therapeutic target.
Journal of The American Society of Nephrology | 2008
Scott S.P. Wildman; Joanne Marks; Clare M. Turner; Liang Yew-Booth; Claire M. Peppiatt-Wildman; Brian F. King; David G. Shirley; WenHui Wang; Robert J. Unwin
The epithelial sodium channel (ENaC) plays a major role in the regulation of sodium balance and BP by controlling Na(+) reabsorption along the renal distal tubule and collecting duct (CD). ENaC activity is affected by extracellular nucleotides acting on P2 receptors (P2R); however, there remain uncertainties over the P2R subtype(s) involved, the molecular mechanism(s) responsible, and their physiologic role. This study investigated the relationship between apical P2R and ENaC activity by assessing the effects of P2R agonists on amiloride-sensitive current in the rat CD. Using whole-cell patch clamp of principal cells of split-open CD from Na(+)-restricted rats, in combination with immunohistochemistry and real-time PCR, we found that activation of metabotropic P2R (most likely the P2Y(2) and/or (4) subtype), via phospholipase C, inhibited ENaC activity. In addition, activation of ionotropic P2R (most likely the P2X(4) and/or (4/6) subtype), via phosphatidylinositol-3 kinase, either inhibited or potentiated ENaC activity, depending on the extracellular Na(+) concentration; therefore, it is proposed that P2X(4) and/or (4/6) receptors might function as apical Na(+) sensors responsible for local regulation of ENaC activity in the CD and could thereby help to regulate Na(+) balance and systemic BP.
Nephron Physiology | 2004
Matthew A. Bailey; Clare M. Turner; A. Hus-Citharel; J. Marchetti; M. Imbert-Teboul; P. Milner; Geoffrey Burnstock; Robert J. Unwin
Extracellular ATP can mobilize intracellular calcium in rat glomeruli by interacting with P2Y receptors. However, the identity of the receptor subtypes involved is not known. In the present study, we have used RT-PCR to identify mRNAs for specific P2Y receptor subtypes expressed in the rat glomerulus: mRNA for P2Y1, P2Y2, P2Y4 and P2Y6 receptors was detected. Functional expression of P2Y1 and P2Y2/P2Y4, but not P2Y6, receptors in intact glomeruli was confirmed by measuring the relative stimulation of the inositol phosphate pathway induced by selective agonists of a particular receptor subtype. Finally, we have used available polyclonal antibodies to confirm the expression of P2Y1 and P2Y2 in the glomerulus, in mesangial cells and glomerular epithelial cells (podocytes), respectively; but we could not demonstrate P2Y4 or P2Y6 receptor expression by this means. In a separate series of experiments, we have examined the possibility that intra-renal sympathetic nerve terminals are a source of extracellular ATP and that this would be supported, though not excluded, by supersensitivity to ATP following denervation. Nucleotide-induced stimulation of the inositol phosphate pathway was measured in both control rats and rats that had been sympathectomized by intraperitoneal injection of 6-hydroxydopamine. The response to norepinephrine was measured as a positive control. In the sympathectomized rats, the effect of norepinephrine was significantly enhanced, whereas ATP-induced inositol phosphate production was unaffected, being similar in both groups of animals.
BMC Nephrology | 2014
Clare M. Turner; Nishkantha Arulkumaran; Mervyn Singer; Robert J. Unwin; Frederick W.K. Tam
The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases.
Cells Tissues Organs | 2004
Clare M. Turner; B. Ramesh; S.K.S. Srai; Geoffrey Burnstock; Robert J. Unwin
The effects of extracellular ATP on fluid secretion and reabsorption by renal epithelial cells, as well as its known effects on cell proliferation and death, are potentially important contributory factors in the development and growth of renal cysts. In this study, we have investigated the protein and mRNA expression of several P2Y receptor subtypes (P2Y1,2,4,6), as well as the P2X5 and P2X7 receptors, in kidney tissue from the Han:SPRD (cy/+) rat model of polycystic kidney disease. All of the P2Y receptors tested for, and the P2X5 and P2X7 subtypes, were located on the cyst-lining cells of Han:SPRD (cy/+) rat polycystic kidneys; most immunostaining was cytosolic and we could not confidently localize it to one or other membrane. However, the staining pattern for P2Y6 was uniquely granular when compared with the other P2 receptors. P2Y2 and P2Y6 receptor mRNA was increased in both homozygote (cy/cy) and heterozygote (cy/+) rat kidneys when compared with unaffected littermates. The protein levels of P2Y2 and P2Y6 receptors were also increased, being undetectable or at a low level, respectively, in control tissue. Finally, P2X7 receptor mRNA was increased in cy/+, but not in cy/cy rat kidneys. Our results show that a number of P2Y receptor subtypes, as well as the P2X5 and P2X7 receptors, are clearly expressed in cyst-lining cells in the Han:SPRD (cy/+) rat model of renal cystic disease. Furthermore, P2Y2 and P2Y6 receptor mRNA and protein levels are markedly increased in cystic rat kidneys compared with normal rats of the same genetic background. Thus, the most consistent findings were an increase in the expression of P2Y2, P2Y6 and P2X7 receptors in cystic tissue. Given the widely reported effects of stimulating these P2 receptor subtypes in epithelial and other renal cells, they could contribute to the development and growth of renal cysts: extracellular ATP and its products ‘trapped’ in cyst fluid may activate P2 receptors expressed by cyst-lining cells, causing cyst expansion from increased fluid secretion and/or reduced reabsorption, as well as an increase in cell turnover (re-modeling).
Frontiers in Physiology | 2013
Nishkantha Arulkumaran; Clare M. Turner; Marije L. Sixma; Mervyn Singer; Robert J. Unwin; Frederick W.K. Tam
Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signaling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signaling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive) role of purinergic signaling. We discuss the role of extracellular nucleotides in adaptation to ischemic renal injury and in the pathogenesis of inflammatory renal disease.
Purinergic Signalling | 2009
Clare M. Turner; James I. Elliott; Frederick W.K. Tam
Our knowledge and understanding of the P2 receptor signalling system in the kidney have increased significantly in the last ten years. The broad range of physiological roles proposed for this receptor system and the variety of P2 receptor subtypes found in the kidney suggest that any disturbance of function may contribute to several pathological processes. So far, most reports of a possible pathophysiological role for this system in the kidney have focussed on polycystic kidney disease, where abnormal P2 receptor signalling might be involved in cyst expansion and disease progression, and on the P2X7 receptor, a unique P2X subtype, which when activated enhances inflammatory cytokine release and production, and also cell death. Expression of this particular receptor is upregulated in some forms of chronic renal injury and inflammatory diseases. Further studies of adenosine triphosphate signalling and P2 receptor expression in renal disorders could provide us with novel insights into the role of these receptors in both normal and abnormal kidney function.
Nephrology Dialysis Transplantation | 2014
Min Jeong Kim; Clare M. Turner; Reiko Hewitt; Jennifer Smith; Gurjeet Bhangal; Charles D. Pusey; Robert J. Unwin; Frederick W.K. Tam
Background The ATP-sensitive P2X7 receptor (P2X7R) has been shown to contribute to renal injury in nephrotoxic nephritis, a rodent model of acute glomerulonephritis, and in unilateral ureteric obstruction (UUO), a rodent model of chronic interstitial inflammation and fibrosis. Renal tubular cells, endothelial cells and macrophages also express the closely related P2X4 receptor (P2X4R), which is chromosomally co-located with P2X7R and has 40% homology; it is also pro-inflammatory and has been shown to interact with P2X7R to modulate its pro-apoptotic and pro-inflammatory effects. Therefore, we chose to explore the function of P2X4R in the UUO model of renal injury using knockout mice. We hypothesized that UUO-induced tubulointerstitial damage and fibrosis would also be attenuated in P2X4R−/− mice. Method P2X4R−/− and wild-type (WT) mice were subjected to either UUO or sham operation. Kidney samples taken on Days 7 and 14 were evaluated for renal inflammation and fibrosis, and expression of pro-fibrotic factors. Results To our surprise, the obstructed kidney in P2X4R−/− mice showed more severe renal injury, more collagen deposition (picrosirius red staining, increase of 53%; P < 0.05) and more type I collagen staining (increase of 107%; P < 0.01), as well as increased mRNA for TGF-β (increase of 102%, P < 0.0005) and CTGF (increase of 157%; P < 0.05) by Day 14, compared with the UUO WT mice. Conclusion These findings showed that lack of P2X4R expression leads to increased renal fibrosis, and increased expression of TGF-β and CTGF in the UUO model.
Kidney International | 2000
Matthew A Bailey; Martine Imbert-Teboul; Clare M. Turner; Sophie Marsy; Kaila S. Srai; Geoffrey Burnstock; Robert J. Unwin