Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare M. Waterman-Storer is active.

Publication


Featured researches published by Clare M. Waterman-Storer.


Cell | 2006

Spatiotemporal Feedback between Actomyosin and Focal-Adhesion Systems Optimizes Rapid Cell Migration

Stephanie Gupton; Clare M. Waterman-Storer

Cells exhibit a biphasic migration-velocity response to increasing adhesion strength, with fast migration occurring at intermediate extracellular matrix (ECM) concentration and slow migration occurring at low and high ECM concentration. A simple mechanical model has been proposed to explain this observation, in which too little adhesion does not provide sufficient traction whereas too much adhesion renders cells immobile. Here we characterize a phenotype for rapid cell migration, which in contrast to the previous model reveals a complex interdependence of subcellular systems that mediates optimal cell migration in response to increasing adhesion strength. The organization and activity of actin, myosin II, and focal adhesions (FAs) are spatially and temporally highly variable and do not exhibit a simple correlation with optimal motility rates. Furthermore, we can recapitulate rapid migration at a nonoptimal ECM concentration by manipulating myosin II activity. Thus, the interplay between actomyosin and FA dynamics results in a specific balance between adhesion and contraction, which induces maximal migration velocity.


Nature Cell Biology | 1999

Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts

Clare M. Waterman-Storer; Rebecca A. Worthylake; Betty P. Liu; Keith Burridge; E. D. Salmon

Microtubules are involved in actin-based protrusion at the leading-edge lamellipodia of migrating fibroblasts. Here we show that the growth of microtubules induced in fibroblasts by removal of the microtubule destabilizer nocodazole activates Rac1 GTPase, leading to the polymerization of actin in lamellipodial protrusions. Lamellipodial protrusions are also activated by the rapid growth of a disorganized array of very short microtubules induced by the microtubule-stabilizing drug taxol. Thus, neither microtubule shortening nor long-range microtubule-based intracellular transport is required for activating protrusion. We suggest that the growth phase of microtubule dynamic instability at leading-edge lamellipodia locally activates Rac1 to drive actin polymerization and lamellipodial protrusion required for cell migration.


Cell | 2001

Importin β Is a Mitotic Target of the Small GTPase Ran in Spindle Assembly

Maxence V. Nachury; Thomas J. Maresca; Wendy C. Salmon; Clare M. Waterman-Storer; Rebecca Heald; Karsten Weis

Abstract The GTPase Ran has recently been shown to stimulate microtubule polymerization in mitotic extracts, but its mode of action is not understood. Here we show that the mitotic role of Ran is largely mediated by the nuclear transport factor importin β. Importin β inhibits spindle formation in vitro and in vivo and sequesters an aster promoting activity (APA) that consists of multiple, independent factors. One component of APA is the microtubule-associated protein NuMA. NuMA and other APA components are discharged from importin β by RanGTP and induce spindle-like structures in the absence of centrosomes, chromatin, or Ran. We propose that RanGTP functions in mitosis as in interphase by locally releasing cargoes from transport factors. In mitosis, this promotes spindle assembly by organizing microtubules in the vicinity of chromosomes.


Current Biology | 1998

Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells

Clare M. Waterman-Storer; Arshad Desai; J. Chloë Bulinski; E. D. Salmon

Fluorescence microscopic visualization of fluorophore-conjugated proteins that have been microinjected or expressed in living cells and have incorporated into cellular structures has yielded much information about protein localization and dynamics [1]. This approach has, however, been limited by high background fluorescence and the difficulty of detecting movement of fluorescent structures because of uniform labeling. These problems have been partially alleviated by the use of more cumbersome methods such as three-dimensional confocal microscopy, laser photobleaching and photoactivation of fluorescence [2]. We report here a method called fluorescent speckle microscopy (FSM) that uses a very low concentration of fluorescent subunits, conventional wide-field fluorescence light microscopy and digital imaging with a low-noise, cooled charged coupled device (CCD) camera. A unique feature of this method is that it reveals the assembly dynamics, movement and turnover of protein assemblies throughout the image field of view at diffraction-limited resolution. We found that FSM also significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells. Our initial applications include the measurement of microtubule movements in mitotic spindles and actin retrograde flow in migrating cells.


Journal of Cell Biology | 2005

Integrin-dependent actomyosin contraction regulates epithelial cell scattering

Johan de Rooij; Andre Kerstens; Gaudenz Danuser; Martin A. Schwartz; Clare M. Waterman-Storer

The scattering of Madin-Darby canine kidney cells in vitro mimics key aspects of epithelial–mesenchymal transitions during development, carcinoma cell invasion, and metastasis. Scattering is induced by hepatocyte growth factor (HGF) and is thought to involve disruption of cadherin-dependent cell–cell junctions. Scattering is enhanced on collagen and fibronectin, as compared with laminin1, suggesting possible cross talk between integrins and cell–cell junctions. We show that HGF does not trigger any detectable decrease in E-cadherin function, but increases integrin-mediated adhesion. Time-lapse imaging suggests that tension on cell–cell junctions may disrupt cell–cell adhesion. Varying the density and type of extracellular matrix proteins shows that scattering correlates with stronger integrin adhesion and increased phosphorylation of the myosin regulatory light chain. To directly test the role of integrin-dependent traction forces, substrate compliance was varied. Rigid substrates that produce high traction forces promoted scattering, in comparison to more compliant substrates. We conclude that integrin-dependent actomyosin traction force mediates the disruption of cell–cell adhesion during epithelial cell scattering.


Journal of Cell Biology | 2005

Cell migration without a lamellipodium translation of actin dynamics into cell movement mediated by tropomyosin

Stephanie Gupton; Karen L. Anderson; Thomas P. Kole; Robert S. Fischer; Aaron Ponti; Sarah E. Hitchcock-DeGregori; Gaudenz Danuser; Velia M. Fowler; Denis Wirtz; Dorit Hanein; Clare M. Waterman-Storer

The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin–binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle αTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.


Current Opinion in Cell Biology | 1999

Positive feedback interactions between microtubule and actin dynamics during cell motility.

Clare M. Waterman-Storer; E. D. Salmon

The migration of tissue cells requires interplay between the microtubule and actin cytoskeletal systems. Recent reports suggest that interactions of microtubules with actin dynamics creates a polarization of microtubule assembly behavior in cells, such that microtubule growth occurs at the leading edge and microtubule shortening occurs at the cell body and rear. Microtubule growth and shortening may activate Rac1 and RhoA signaling, respectively, to control actin dynamics. Thus, an actin-dependent gradient in microtubule dynamic-instability parameters in cells may feed back through the activation of specific signalling pathways to perpetuate the polarized actin-assembly dynamics required for cell motility.


Journal of Cell Biology | 2007

Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases

Araceli Grande-García; Asier Echarri; Johan de Rooij; Nazilla B. Alderson; Clare M. Waterman-Storer; José M. Valdivielso; Miguel A. Pozo

Development, angiogenesis, wound healing, and metastasis all involve the movement of cells in response to changes in the extracellular environment. To determine whether caveolin-1 plays a role in cell migration, we have used fibroblasts from knockout mice. Caveolin-1–deficient cells lose normal cell polarity, exhibit impaired wound healing, and have decreased Rho and increased Rac and Cdc42 GTPase activities. Directional persistency of migration is lost, and the cells show an impaired response to external directional stimuli. Both Src inactivation and p190RhoGAP knockdown restore the wild-type phenotype to caveolin-1–deficient cells, suggesting that caveolin-1 stimulates normal Rho GTP loading through inactivation of the Src–p190RhoGAP pathway. These findings highlight the importance of caveolin-1 in the establishment of cell polarity during directional migration through coordination of the signaling of Src kinase and Rho GTPases.


Journal of Biological Chemistry | 2004

Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1.

Torsten Wittmann; Gary M. Bokoch; Clare M. Waterman-Storer

In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.


Journal of Cell Biology | 2003

Regulation of leading edge microtubule and actin dynamics downstream of Rac1

Torsten Wittmann; Gary M. Bokoch; Clare M. Waterman-Storer

Actin in migrating cells is regulated by Rho GTPases. However, Rho proteins might also affect microtubules (MTs). Here, we used time-lapse microscopy of PtK1 cells to examine MT regulation downstream of Rac1. In these cells, “pioneer” MTs growing into leading-edge protrusions exhibited a decreased catastrophe frequency and an increased time in growth as compared with MTs further from the leading edge. Constitutively active Rac1(Q61L) promoted pioneer behavior in most MTs, whereas dominant-negative Rac1(T17N) eliminated pioneer MTs, indicating that Rac1 is a regulator of MT dynamics in vivo. Rac1(Q61L) also enhanced MT turnover through stimulation of MT retrograde flow and breakage. Inhibition of p21-activated kinases (Paks), downstream effectors of Rac1, inhibited Rac1(Q61L)-induced MT growth and retrograde flow. In addition, Rac1(Q61L) promoted lamellipodial actin polymerization and Pak-dependent retrograde flow. Together, these results indicate coordinated regulation of the two cytoskeletal systems in the leading edge of migrating cells.

Collaboration


Dive into the Clare M. Waterman-Storer's collaboration.

Top Co-Authors

Avatar

E. D. Salmon

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Stephanie Gupton

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wendy C. Salmon

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael C. Adams

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Aaron Ponti

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Gary M. Bokoch

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sidney L. Shaw

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge