Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare Strode is active.

Publication


Featured researches published by Clare Strode.


BMC Genomics | 2008

Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s . from Southern Benin and Nigeria

Rousseau Djouaka; Adekunle A. Bakare; Ousmane Coulibaly; Martin Akogbéto; Hilary Ranson; Janet Hemingway; Clare Strode

BackgroundInsecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes.ResultsAll mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations.ConclusionMultiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms were also identified that warrant further investigation. Metabolic genes were over expressed irrespective of the presence of kdr, the latter resistance mechanism being absent in one resistant population. The discovery that mosquitoes collected from different types of breeding sites display differing profiles of metabolic genes at the adult stage may reflect the influence of a range of xenobiotics on selecting for resistance in mosquitoes.


Insect Biochemistry and Molecular Biology | 2008

Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides.

Rodolphe Poupardin; Stéphane Reynaud; Clare Strode; Hilary Ranson; John Vontas; Jean-Philippe David

The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2009

Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria

Taiwo Samson Awolola; O. A. Oduola; Clare Strode; Lizette L. Koekemoer; Basil D. Brooke; Hilary Ranson

Pyrethroid insecticide resistance in Anopheles gambiae sensu stricto is a major concern to malaria vector control programmes. Resistance is mainly due to target-site insensitivity arising from a single point mutation, often referred to as knockdown resistance (kdr). Metabolic-based resistance mechanisms have also been implicated in pyrethroid resistance in East Africa and are currently being investigated in West Africa. Here we report the co-occurrence of both resistance mechanisms in a population of An. gambiae s.s. from Nigeria. Bioassay, synergist and biochemical analysis carried out on resistant and susceptible strains of An. gambiae s.s. from the same geographical area revealed >50% of the West African kdr mutation in the resistant mosquitoes but <3% in the susceptible mosquitoes. Resistant mosquitoes synergized using pyperonyl butoxide before permethrin exposure showed a significant increase in mortality compared with the non-synergized. Biochemical assays showed an increased level of monooxygenase but not glutathione-S-transferase or esterase activities in the resistant mosquitoes. Microarray analysis using the An. gambiae detox-chip for expression of detoxifying genes showed five over-expressed genes in the resistant strain when compared with the susceptible one. Two of these, CPLC8 and CPLC#, are cuticular genes not implicated in pyrethroid metabolism in An. gambiae s.s, and could constitute a novel set of candidate genes that warrant further investigation.


Aquatic Toxicology | 2009

Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics☆

Muhammad Asam Riaz; Rodolphe Poupardin; Stéphane Reynaud; Clare Strode; Hilary Ranson; Jean-Philippe David

The effect of exposure of Aedes aegypti larvae for 72h to sub-lethal concentrations of the herbicide glyphosate and the polycyclic aromatic hydrocarbon benzo[a]pyrene on their subsequent tolerance to the chemical insecticides imidacloprid, permethrin and propoxur, detoxification enzyme activities and transcription of detoxification genes was investigated. Bioassays revealed a significant increase in larval tolerance to imidacloprid and permethrin following exposure to benzo[a]pyrene and glyphosate. Larval tolerance to propoxur increased moderately after exposure to benzo[a]pyrene while a minor increased tolerance was observed after exposure to glyphosate. Cytochrome P450 monooxygenases activities were strongly induced in larvae exposed to benzo[a]pyrene and moderately induced in larvae exposed to imidacloprid and glyphosate. Larval glutathione S-transferases activities were strongly induced after exposure to propoxur and moderately induced after exposure to benzo[a]pyrene and glyphosate. Larval esterase activities were considerably induced after exposure to propoxur but only slightly induced by other xenobiotics. Microarray screening of 290 detoxification genes following exposure to each xenobiotic with the DNA microarray Aedes Detox Chip identified multiple detoxification and red/ox genes induced by xenobiotics and insecticides. Further transcription studies using real-time quantitative RT-PCR confirmed the induction of multiple P450 genes, 1 carboxy/cholinelesterase gene and 2 red/ox genes by insecticides and xenobiotics. Overall, this study reveals the potential of benzo[a]pyrene and glyphosate to affect the tolerance of mosquito larvae to chemical insecticides, possibly through the cross-induction of particular genes encoding detoxification enzymes.


Genetics | 2008

Quantitative Trait Loci Mapping of Genome Regions Controlling Permethrin Resistance in the Mosquito Aedes aegypti

Karla Saavedra-Rodriguez; Clare Strode; Adriana Flores Suarez; Ildefonso Fernández Salas; Hilary Ranson; Janet Hemingway; William C. Black

The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F3 advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F3 adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure.


Insect Molecular Biology | 2012

Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti.

Karla Saavedra-Rodriguez; Adriana Flores Suarez; Ildefonso Fernández Salas; Clare Strode; Hilary Ranson; Janet Hemingway; William C. Black

Changes in gene expression before, during and after five generations of permethrin laboratory selection were monitored in six strains of Aedes aegypti: five F2–F3 collections from the Yucatán Peninsula of Mexico and one F2 from Iquitos, Peru. Three biological replicate lines were generated for each strain. The response to selection was measured as changes in the lethal and knockdown permethrin concentrations (LC50, KC50) and in the frequency of the Ile1,016 substitution in the voltage‐gated sodium channel (para) gene. Changes in expression of 290 metabolic detoxification genes were measured using the ‘Aedes Detox’ microarray. Selection simultaneously increased the LC50, KC50 and Ile1,016 frequency. There was an inverse relationship between Ile1,016 frequency and the numbers of differentially transcribed genes. The Iquitos strain lacked the Ile1,016 allele and 51 genes were differentially transcribed after selection as compared with 10–18 genes in the Mexican strains. Very few of the same genes were differentially transcribed among field strains but 10 cytochrome P450 genes were upregulated in more than one strain. Laboratory adaptation to permethrin in Ae. aegypti is genetically complex and largely conditioned by geographic origin and pre‐existing target site insensitivity in the para gene. The lack of uniformity in the genes that responded to artificial selection as well as differences in the direction of their responses challenges the assumption that one or a few genes control permethrin metabolic resistance. Attempts to identify one or a few metabolic genes that are predictably associated with permethrin adaptation may be futile.


Insect Molecular Biology | 2006

Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae.

Clare Strode; Keith Steen; Federica Ortelli; Hilary Ranson

The diverse habitats and diets encountered during the life cycle of an Anopheles mosquito have necessitated the development of extensive families of detoxification enzymes. Expansion of the three detoxification enzyme families (cytochrome P450s, carboxylesterases and glutathione transfereases), has occurred in mosquitoes compared with Drosophila, however, very little is known regarding the developmental expression of theses genes. Using a custom made microarray we determined the expression profile of the detoxification genes in adults, larvae and pupae of the malaria vector A. gambiae. The expression of approximately one quarter of these genes was developmentally regulated. The expression profile of each of these genes and the information this data provides on putative functions of the mosquito detoxification enzymes is discussed.


Aquatic Toxicology | 2013

Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti

Muhammad Asam Riaz; Alexia Chandor-Proust; Chantal Dauphin-Villemant; Rodolphe Poupardin; Christopher M. Jones; Clare Strode; Myriam Régent-Kloeckner; Jean-Philippe David; Stéphane Reynaud

Mosquitoes are vectors of several major human diseases and their control is mainly based on the use of chemical insecticides. Resistance of mosquitoes to organochlorines, organophosphates, carbamates and pyrethroids led to a regain of interest for the use of neonicotinoid insecticides in vector control. The present study investigated the molecular basis of neonicotinoid resistance in the mosquito Aedes aegypti. A strain susceptible to insecticides was selected at the larval stage with imidacloprid. After eight generations of selection, larvae of the selected strain (Imida-R) showed a 5.4-fold increased tolerance to imidacloprid while adult tolerance level remained low. Imida-R larvae showed significant cross-tolerance to other neonicotinoids but not to pyrethroids, organophosphates and carbamates. Transcriptome profiling identified 344 and 108 genes differentially transcribed in larvae and adults of the Imida-R strain compared to the parental strain. Most of these genes encode detoxification enzymes, cuticle proteins, hexamerins as well as other proteins involved in cell metabolism. Among detoxification enzymes, cytochrome P450 monooxygenases (CYPs) and glucosyl/glucuronosyl transferases (UDPGTs) were over-represented. Bioassays with enzyme inhibitors and biochemical assays confirmed the contribution of P450s with an increased capacity of the Imida-R microsomes to metabolize imidacloprid in presence of NADPH. Comparison of substrate recognition sites and imidacloprid docking models of six CYP6s over-transcribed in the Imida-R strain together with Bemisia tabaci CYP6CM1vQ and Drosophila melanogaster CYP6G1, both able to metabolize imidacloprid, suggested that CYP6BB2 and CYP6N12 are good candidates for imidacloprid metabolism in Ae. aegypti. The present study revealed that imidacloprid tolerance in mosquitoes can arise after few generations of selection at the larval stage but does not lead to a significant tolerance of adults. As in other insects, P450-mediated insecticide metabolism appears to play a major role in imidacloprid tolerance in mosquitoes.


Tropical Medicine & International Health | 2011

Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti?

Georgina Victoria Bingham; Clare Strode; Lien Tran; Pham Thi Khoa; Helen Pates Jamet

Background  Pyrethroid resistance can be considered the main threat to the continued control of many mosquito vectors of disease. Piperonyl butoxide (PBO) has been used as a synergist to help increase the efficacy of certain insecticides. This enhancement stems from its ability to inhibit two major metabolic enzyme systems, P450s and non‐specific esterases, and to enhance cuticular penetration of the insecticide.


PLOS ONE | 2014

Underpinning sustainable vector control through informed insecticide resistance management.

Edward K. Thomsen; Clare Strode; Kay Hemmings; Angela Hughes; Emmanuel Chanda; Mulenga Musapa; Mulakwa Kamuliwo; Faustina N. Phiri; Lucy Muzia; Javan Chanda; Alister Kandyata; Brian Chirwa; Kathleen Poer; Janet Hemingway; Charles S. Wondji; Hilary Ranson; Michael Coleman

Background There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambias programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. Methodology/Principal Findings A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. Conclusions/Significance Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan.

Collaboration


Dive into the Clare Strode's collaboration.

Top Co-Authors

Avatar

Hilary Ranson

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Janet Hemingway

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe David

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rodolphe Poupardin

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Reynaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Yébakima

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge