Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare V. Logan is active.

Publication


Featured researches published by Clare V. Logan.


Nature Genetics | 2011

TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum

Erica E. Davis; Qi Zhang; Qin Liu; Bill H. Diplas; Lisa Davey; Jane Hartley; Corinne Stoetzel; Katarzyna Szymanska; Gokul Ramaswami; Clare V. Logan; Donna M. Muzny; Alice C. Young; David A. Wheeler; Pedro Cruz; Margaret Morgan; Lora Lewis; Praveen F. Cherukuri; Baishali Maskeri; Nancy F. Hansen; James C. Mullikin; Robert W. Blakesley; Gerard G. Bouffard; Gabor Gyapay; Susanne Rieger; Burkhard Tönshoff; Ilse Kern; Neveen A. Soliman; Thomas J. Neuhaus; Kathryn J. Swoboda; Hülya Kayserili

Ciliary dysfunction leads to a broad range of overlapping phenotypes, collectively termed ciliopathies. This grouping is underscored by genetic overlap, where causal genes can also contribute modifier alleles to clinically distinct disorders. Here we show that mutations in TTC21B, which encodes the retrograde intraflagellar transport protein IFT139, cause both isolated nephronophthisis and syndromic Jeune asphyxiating thoracic dystrophy. Moreover, although resequencing of TTC21B in a large, clinically diverse ciliopathy cohort and matched controls showed a similar frequency of rare changes, in vivo and in vitro evaluations showed a significant enrichment of pathogenic alleles in cases (P < 0.003), suggesting that TTC21B contributes pathogenic alleles to ∼5% of ciliopathy cases. Our data illustrate how genetic lesions can be both causally associated with diverse ciliopathies and interact in trans with other disease-causing genes and highlight how saturated resequencing followed by functional analysis of all variants informs the genetic architecture of inherited disorders.


Nature Genetics | 2009

A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies.

Hemant Khanna; Erica E. Davis; Carlos A. Murga-Zamalloa; Alejandro Estrada-Cuzcano; Irma Lopez; Anneke I. den Hollander; Marijke N Zonneveld; Mohammad Othman; Naushin Waseem; Christina Chakarova; Cecilia Maubaret; Anna Diaz-Font; Ian M. MacDonald; Donna M. Muzny; David A. Wheeler; Margaret Morgan; Lora Lewis; Clare V. Logan; Perciliz L. Tan; Michael Beer; Chris F. Inglehearn; Richard Alan Lewis; Samuel G. Jacobson; Carsten Bergmann; Philip L. Beales; Tania Attié-Bitach; Colin A. Johnson; Edgar A. Otto; Shomi S. Bhattacharya; Friedhelm Hildebrandt

Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.


Nature Genetics | 2010

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Enza Maria Valente; Clare V. Logan; Soumaya Mougou-Zerelli; Jeong Ho Lee; Jennifer L. Silhavy; Francesco Brancati; Miriam Iannicelli; Lorena Travaglini; Sveva Romani; Barbara Illi; Matthew Adams; Katarzyna Szymanska; Annalisa Mazzotta; Ji Eun Lee; Jerlyn Tolentino; Dominika Swistun; Carmelo Salpietro; Carmelo Fede; Stacey Gabriel; Carsten Russ; Kristian Cibulskis; Carrie Sougnez; Friedhelm Hildebrandt; Edgar A. Otto; Susanne Held; Bill H. Diplas; Erica E. Davis; Mario Mikula; Charles M. Strom; Bruria Ben-Zeev

Joubert syndrome (JBTS), related disorders (JSRDs) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and CORS2 (JBTS2) loci are allelic and caused by mutations in TMEM216, which encodes an uncharacterized tetraspan transmembrane protein. Individuals with CORS2 frequently had nephronophthisis and polydactyly, and two affected individuals conformed to the oro-facio-digital type VI phenotype, whereas skeletal dysplasia was common in fetuses affected by MKS. A single G218T mutation (R73L in the protein) was identified in all cases of Ashkenazi Jewish descent (n = 10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in mutant fibroblasts or after knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 formed a complex with Meckelin, which is encoded by a gene also mutated in JSRDs and MKS. Disruption of tmem216 expression in zebrafish caused gastrulation defects similar to those in other ciliary morphants. These data implicate a new family of proteins in the ciliopathies and further support allelism between ciliopathy disorders.


Nature Genetics | 2014

Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling

Clare V. Logan; Gyorgy Szabadkai; Jenny A. Sharpe; David A. Parry; Silvia Torelli; Anne-Marie Childs; Marjolein Kriek; Rahul Phadke; Colin A. Johnson; Nicola Roberts; David T. Bonthron; Karen A. Pysden; Tamieka Whyte; Iulia Munteanu; A. Reghan Foley; Gabrielle Wheway; Katarzyna Szymanska; Subaashini Natarajan; Zakia Abdelhamed; J.E. Morgan; Helen Roper; Gijs W.E. Santen; Erik H. Niks; W. Ludo van der Pol; Dick Lindhout; Anna Raffaello; Diego De Stefani; Johan T. den Dunnen; Yu Sun; Ieke B. Ginjaar

Mitochondrial Ca2+ uptake has key roles in cell life and death. Physiological Ca2+ signaling regulates aerobic metabolism, whereas pathological Ca2+ overload triggers cell death. Mitochondrial Ca2+ uptake is mediated by the Ca2+ uniporter complex in the inner mitochondrial membrane, which comprises MCU, a Ca2+-selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca2+ uptake at low cytosolic Ca2+ concentrations was increased, and cytosolic Ca2+ signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy and the core myopathies involves abnormal mitochondrial Ca2+ handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca2+ signaling, demonstrating the crucial role of mitochondrial Ca2+ uptake in humans.


American Journal of Human Genetics | 2011

Mutations Causing Familial Biparental Hydatidiform Mole Implicate C6orf221 as a Possible Regulator of Genomic Imprinting in the Human Oocyte

David A. Parry; Clare V. Logan; Bruce E. Hayward; Michael Shires; Hanène Landolsi; Christine P. Diggle; Ian M. Carr; Cécile Rittore; Isabelle Touitou; Laurent Philibert; Rosemary A. Fisher; Masoumeh Fallahian; John Huntriss; Helen M. Picton; Saghira Malik; Graham R. Taylor; Colin A. Johnson; David T. Bonthron; Eamonn Sheridan

Familial biparental hydatidiform mole (FBHM) is the only known pure maternal-effect recessive inherited disorder in humans. Affected women, although developmentally normal themselves, suffer repeated pregnancy loss because of the development of the conceptus into a complete hydatidiform mole in which extraembryonic trophoblastic tissue develops but the embryo itself suffers early demise. This developmental phenotype results from a genome-wide failure to correctly specify or maintain a maternal epigenotype at imprinted loci. Most cases of FBHM result from mutations of NLRP7, but genetic heterogeneity has been demonstrated. Here, we report biallelic mutations of C6orf221 in three families with FBHM. The previously described biological properties of their respective gene families suggest that NLRP7 and C6orf221 may interact as components of an oocyte complex that is directly or indirectly required for determination of epigenetic status on the oocyte genome.


Journal of Medical Genetics | 2008

Recent advances in the molecular pathology, cell biology and genetics of ciliopathies

Matthew Adams; Ursula M Smith; Clare V. Logan; Colin A. Johnson

Primary cilia have a broad tissue distribution and are present on most cell types in the human body. Until recently, they were considered to be redundant organelles, but progress over the past 5 years has led to an understanding of their role in normal mammalian development. The class of inherited disorders that involve aberrant ciliary function are known as ciliopathies, and although their range of severity can vary, they share some common and unexpected clinical phenotypes. The aim of this review is to assess recent insights into the structure, function and formation of primary cilia, and relate this to the pathology, molecular genetics and cell biology of the ciliopathies.


Nature Genetics | 2012

Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration

Robert K. Koenekoop; Hui Wang; Jacek Majewski; Xia Wang; Irma Lopez; Huanan Ren; Yiyun Chen; Yumei Li; Gerald A. Fishman; Mohammed Genead; Jeremy Schwartzentruber; Naimesh Solanki; Elias I. Traboulsi; Jingliang Cheng; Clare V. Logan; Martin McKibbin; Bruce E. Hayward; David A. Parry; Colin A. Johnson; Mohammed Nageeb; James A. Poulter; Moin D. Mohamed; Hussain Jafri; Yasmin Rashid; Graham R. Taylor; Vafa Keser; Graeme Mardon; Huidan Xu; Chris F. Inglehearn; Qing Fu

Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wlds) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.


Nature Genetics | 2012

CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium

Ji Eun Lee; Jennifer L. Silhavy; Maha S. Zaki; Jana Schroth; Sarah E. Marsh; Jesus Olvera; Francesco Brancati; Miriam Iannicelli; Koji Ikegami; Andrew M. Schlossman; Barry Merriman; Tania Attié-Bitach; Clare V. Logan; Ian A. Glass; Andrew Cluckey; Carrie M. Louie; Jeong Ho Lee; Hilary R. Raynes; Isabelle Rapin; Ignacio P. Castroviejo; Mitsutoshi Setou; Clara Barbot; Eugen Boltshauser; Stanley F. Nelson; Friedhelm Hildebrandt; Colin A. Johnson; Dan Doherty; Enza Maria Valente; Joseph G. Gleeson

Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.


Nature Genetics | 2014

Mutations in TJP2 cause progressive cholestatic liver disease

Melissa Sambrotta; Sandra Strautnieks; Efterpi Papouli; Peter Rushton; Barnaby Clark; David A. Parry; Clare V. Logan; Lucy J. Newbury; Binita M. Kamath; Simon C. Ling; Tassos Grammatikopoulos; Bart Wagner; John C. Magee; Ronald J. Sokol; Giorgina Mieli-Vergani; Joshua D. Smith; Colin A. Johnson; Patricia McClean; Michael A. Simpson; A.S. Knisely; Laura N. Bull; Richard Thompson

Elucidating genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Here we show that protein-truncating mutations in the tight junction protein 2 gene (TJP2) cause failure of protein localization and disruption of tight-junction structure, leading to severe cholestatic liver disease. These findings contrast with those in the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species.


Journal of Cell Science | 2009

Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton

Helen R. Dawe; Matthew Adams; Gabrielle Wheway; Katarzyna Szymanska; Clare V. Logan; Angelika A. Noegel; Keith Gull; Colin A. Johnson

Meckel-Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder caused by mutations in genes that encode components of the primary cilium and basal body. Here we show that two MKS proteins, MKS1 and meckelin, that are required for centrosome migration and ciliogenesis interact with actin-binding isoforms of nesprin-2 (nuclear envelope spectrin repeat protein 2, also known as Syne-2 and NUANCE). Nesprins are important scaffold proteins for maintenance of the actin cytoskeleton, nuclear positioning and nuclear-envelope architecture. However, in ciliated-cell models, meckelin and nesprin-2 isoforms colocalized at filopodia prior to the establishment of cell polarity and ciliogenesis. Loss of nesprin-2 and nesprin-1 shows that both mediate centrosome migration and are then essential for ciliogenesis, but do not otherwise affect apical-basal polarity. Loss of meckelin (by siRNA and in a patient cell-line) caused a dramatic remodelling of the actin cytoskeleton, aberrant localization of nesprin-2 isoforms to actin stress-fibres and activation of RhoA signalling. These findings further highlight the important roles of the nesprins during cellular and developmental processes, particularly in general organelle positioning, and suggest that a mechanistic link between centrosome positioning, cell polarity and the actin cytoskeleton is required for centrosomal migration and is essential for early ciliogenesis.

Collaboration


Dive into the Clare V. Logan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Bonthron

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge