Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Bonthron is active.

Publication


Featured researches published by David T. Bonthron.


Nature Genetics | 2006

Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus

Yanick J. Crow; Bruce E. Hayward; Rekha Parmar; Peter Robins; Andrea Leitch; Manir Ali; Deborah N. Black; Hans van Bokhoven; Han G. Brunner; B.C.J. Hamel; Peter Corry; Frances Cowan; Suzanne Frints; Joerg Klepper; John H. Livingston; Sally Ann Lynch; R.F. Massey; Jean François Meritet; Jacques L. Michaud; Gérard Ponsot; Thomas Voit; Pierre Lebon; David T. Bonthron; Andrew P. Jackson; Deborah E. Barnes; Tomas Lindahl

Aicardi-Goutières syndrome (AGS) presents as a severe neurological brain disease and is a genetic mimic of the sequelae of transplacentally acquired viral infection. Evidence exists for a perturbation of innate immunity as a primary pathogenic event in the disease phenotype. Here, we show that TREX1, encoding the major mammalian 3′ → 5′ DNA exonuclease, is the AGS1 gene, and AGS-causing mutations result in abrogation of TREX1 enzyme activity. Similar loss of function in the Trex1−/− mouse leads to an inflammatory phenotype. Our findings suggest an unanticipated role for TREX1 in processing or clearing anomalous DNA structures, failure of which results in the triggering of an abnormal innate immune response.


Nature Genetics | 2006

Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection

Yanick J. Crow; Andrea Leitch; Bruce E. Hayward; Anna Garner; Rekha Parmar; Elen Griffith; Manir Ali; Colin A. Semple; Jean Aicardi; Riyana Babul-Hirji; Clarisse Baumann; Peter Baxter; Enrico Bertini; Kate Chandler; David Chitayat; Daniel Cau; Catherine Déry; Elisa Fazzi; Cyril Goizet; Mary D. King; Joerg Klepper; Didier Lacombe; Giovanni Lanzi; Hermione Lyall; María Luisa Martínez-Frías; Michèle Mathieu; Carole McKeown; Anne Monier; Yvette Oade; Oliver Quarrell

Aicardi-Goutières syndrome (AGS) is an autosomal recessive neurological disorder, the clinical and immunological features of which parallel those of congenital viral infection. Here we define the composition of the human ribonuclease H2 enzyme complex and show that AGS can result from mutations in the genes encoding any one of its three subunits. Our findings demonstrate a role for ribonuclease H in human neurological disease and suggest an unanticipated relationship between ribonuclease H2 and the antiviral immune response that warrants further investigation.


Nature Genetics | 2009

Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response

Gillian I. Rice; Jacquelyn Bond; Aruna Asipu; Rebecca L. Brunette; Iain W. Manfield; Ian M. Carr; Jonathan C. Fuller; Richard M. Jackson; Teresa Lamb; Tracy A. Briggs; Manir Ali; Hannah Gornall; Alec Aeby; Simon P Attard-Montalto; Enrico Bertini; C. Bodemer; Knut Brockmann; Louise Brueton; Peter Corry; Isabelle Desguerre; Elisa Fazzi; Angels Garcia Cazorla; Blanca Gener; B.C.J. Hamel; Arvid Heiberg; Matthew Hunter; Marjo S. van der Knaap; Ram Kumar; Lieven Lagae; Pierre Landrieu

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


Journal of Clinical Investigation | 2001

Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly

Bruce E. Hayward; Anne Barlier; Márta Korbonits; Ashley B. Grossman; Philippe Jacquet; Alain Enjalbert; David T. Bonthron

Approximately 40% of growth hormone-secreting pituitary adenomas have somatic mutations in the GNAS1 gene (the so-called gsp oncogene). These mutations at codon 201 or codon 227 constitutively activate the alpha subunit of the adenylate cyclase-stimulating G protein G(s). GNAS1 is subject to a complex pattern of genomic imprinting, its various promoters directing the production of maternally, paternally, and biallelically derived gene products. Transcripts encoding G(s)alpha are biallelically derived in most human tissues. Despite this, we show here that in 21 out of 22 gsp-positive somatotroph adenomas, the mutation had occurred on the maternal allele. To investigate the reason for this allelic bias, we also analyzed GNAS1 imprinting in the normal adult pituitary and found that G(s)alpha is monoallelically expressed from the maternal allele in this tissue. We further show that this monoallelic expression of G(s)alpha is frequently relaxed in somatotroph tumors, both in those that have gsp mutations and in those that do not. These findings imply a possible role for loss of G(s)alpha imprinting during pituitary somatotroph tumorigenesis and also suggest that G(s)alpha imprinting is regulated separately from that of the other GNAS1 products, NESP55 and XLalphas, imprinting of which is retained in these tumors.


Nature | 2002

A global disorder of imprinting in the human female germ line

Hannah Judson; Bruce E. Hayward; Eamonn Sheridan; David T. Bonthron

Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment.


Nature Genetics | 2008

Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy

Sandeep Uppal; Christine P. Diggle; Ian M. Carr; Colin W. G. Fishwick; Mushtaq Ahmed; Gamal H Ibrahim; Philip S Helliwell; Anna Latos-Bieleńska; Simon E. V. Phillips; Alexander F. Markham; Christopher Bennett; David T. Bonthron

Digital clubbing, recognized by Hippocrates in the fifth century BC, is the outward hallmark of pulmonary hypertrophic osteoarthropathy, a clinical constellation that develops secondary to various acquired diseases, especially intrathoracic neoplasm. The pathogenesis of clubbing and hypertrophic osteoarthropathy has hitherto been poorly understood, but a clinically indistinguishable primary (idiopathic) form of hypertrophic osteoarthropathy (PHO) is recognized. This familial disorder can cause diagnostic confusion, as well as significant disability. By autozygosity methods, we mapped PHO to chromosome 4q33–q34 and identified mutations in HPGD, encoding 15-hydroxyprostaglandin dehydrogenase, the main enzyme of prostaglandin degradation. Homozygous individuals develop PHO secondary to chronically elevated prostaglandin E2 levels. Heterozygous relatives also show milder biochemical and clinical manifestations. These findings not only suggest therapies for PHO, but also imply that clubbing secondary to other pathologies may be prostaglandin mediated. Testing for HPGD mutations and biochemical testing for HPGD deficiency in patients with unexplained clubbing might help to obviate extensive searches for occult pathology.


American Journal of Human Genetics | 2004

Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome

Michel De Vos; Bruce E. Hayward; Susan Picton; Eamonn Sheridan; David T. Bonthron

We investigated a family with an autosomal recessive syndrome of cafe-au-lait patches and childhood malignancy, notably supratentorial primitive neuroectodermal tumor. There was no cancer predisposition in heterozygotes; nor was there bowel cancer in any individual. However, autozygosity mapping indicated linkage to a region of 7p22 surrounding the PMS2 mismatch-repair gene. Sequencing of genomic PCR products initially failed to identify a PMS2 mutation. Genome searches then revealed a previously unrecognized PMS2 pseudogene, corresponding to exons 9-15, within a 100-kb inverted duplication situated 600 kb centromeric from PMS2 itself. This information allowed a redesigned sequence analysis, identifying a homozygous mutation (R802X) in PMS2 exon 14. Furthermore, in the family with Turcot syndrome, in which the first inherited PMS2 mutation (R134X) was described, a further truncating mutation was identified on the other allele, in exon 13. Further whole-genome analysis shows that the complexity of PMS2 pseudogenes is greater than appreciated and may have hindered previous mutation studies. Several previously reported PMS2 polymorphisms are, in fact, pseudogene sequence variants. Although PMS2 mutations may be rare in colorectal cancer, they appear, for the most part, to behave as recessive traits. For technical reasons, their involvement in childhood cancer, particularly in primitive neuroectodermal tumor, may have been underestimated.


Nature Genetics | 2014

Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling

Clare V. Logan; Gyorgy Szabadkai; Jenny A. Sharpe; David A. Parry; Silvia Torelli; Anne-Marie Childs; Marjolein Kriek; Rahul Phadke; Colin A. Johnson; Nicola Roberts; David T. Bonthron; Karen A. Pysden; Tamieka Whyte; Iulia Munteanu; A. Reghan Foley; Gabrielle Wheway; Katarzyna Szymanska; Subaashini Natarajan; Zakia Abdelhamed; J.E. Morgan; Helen Roper; Gijs W.E. Santen; Erik H. Niks; W. Ludo van der Pol; Dick Lindhout; Anna Raffaello; Diego De Stefani; Johan T. den Dunnen; Yu Sun; Ieke B. Ginjaar

Mitochondrial Ca2+ uptake has key roles in cell life and death. Physiological Ca2+ signaling regulates aerobic metabolism, whereas pathological Ca2+ overload triggers cell death. Mitochondrial Ca2+ uptake is mediated by the Ca2+ uniporter complex in the inner mitochondrial membrane, which comprises MCU, a Ca2+-selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca2+ uptake at low cytosolic Ca2+ concentrations was increased, and cytosolic Ca2+ signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy and the core myopathies involves abnormal mitochondrial Ca2+ handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca2+ signaling, demonstrating the crucial role of mitochondrial Ca2+ uptake in humans.


American Journal of Human Genetics | 2011

Mutations Causing Familial Biparental Hydatidiform Mole Implicate C6orf221 as a Possible Regulator of Genomic Imprinting in the Human Oocyte

David A. Parry; Clare V. Logan; Bruce E. Hayward; Michael Shires; Hanène Landolsi; Christine P. Diggle; Ian M. Carr; Cécile Rittore; Isabelle Touitou; Laurent Philibert; Rosemary A. Fisher; Masoumeh Fallahian; John Huntriss; Helen M. Picton; Saghira Malik; Graham R. Taylor; Colin A. Johnson; David T. Bonthron; Eamonn Sheridan

Familial biparental hydatidiform mole (FBHM) is the only known pure maternal-effect recessive inherited disorder in humans. Affected women, although developmentally normal themselves, suffer repeated pregnancy loss because of the development of the conceptus into a complete hydatidiform mole in which extraembryonic trophoblastic tissue develops but the embryo itself suffers early demise. This developmental phenotype results from a genome-wide failure to correctly specify or maintain a maternal epigenotype at imprinted loci. Most cases of FBHM result from mutations of NLRP7, but genetic heterogeneity has been demonstrated. Here, we report biallelic mutations of C6orf221 in three families with FBHM. The previously described biological properties of their respective gene families suggest that NLRP7 and C6orf221 may interact as components of an oocyte complex that is directly or indirectly required for determination of epigenetic status on the oocyte genome.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice

Takuji Ishimoto; Miguel A. Lanaspa; MyPhuong T. Le; Gabriela Garcia; Christine P. Diggle; Paul S. MacLean; Matthew R. Jackman; Aruna Asipu; Carlos A. Roncal-Jimenez; Tomoki Kosugi; Christopher J. Rivard; Shoichi Maruyama; Bernardo Rodriguez-Iturbe; Laura G. Sánchez-Lozada; David T. Bonthron; Yuri Y. Sautin; Richard J. Johnson

Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Fructose intake also causes features of metabolic syndrome in laboratory animals and humans. The first enzyme in fructose metabolism is fructokinase, which exists as two isoforms, A and C. Here we show that fructose-induced metabolic syndrome is prevented in mice lacking both isoforms but is exacerbated in mice lacking fructokinase A. Fructokinase C is expressed primarily in liver, intestine, and kidney and has high affinity for fructose, resulting in rapid metabolism and marked ATP depletion. In contrast, fructokinase A is widely distributed, has low affinity for fructose, and has less dramatic effects on ATP levels. By reducing the amount of fructose for metabolism in the liver, fructokinase A protects against fructokinase C-mediated metabolic syndrome. These studies provide insights into the mechanisms by which fructose causes obesity and metabolic syndrome.

Collaboration


Dive into the David T. Bonthron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce E. Hayward

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Watson

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar

Laura A. Crinnion

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge