Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clarissa L. Waites is active.

Publication


Featured researches published by Clarissa L. Waites.


Nature Neuroscience | 2009

SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway

Okunola Jeyifous; Clarissa L. Waites; Christian G. Specht; Sho Fujisawa; Manja Schubert; Eric I. Lin; John Marshall; Chiye Aoki; Tharani de Silva; Johanna M. Montgomery; Craig C. Garner; William N. Green

Synaptic plasticity is dependent upon the differential sorting, delivery and retention of neurotransmitter receptors, yet the mechanisms underlying these processes are poorly understood. In the present study, we have found that differential sorting of glutamate receptor subtypes begins within the endoplasmic reticulum (ER) of rat hippocampal neurons. While AMPARs are trafficked to the plasma membrane via the conventional somatic Golgi network, NMDARs are diverted from the somatic ER into a specialized ER sub-compartment that bypasses somatic Golgi, merging instead with dendritic Golgi outposts. Intriguingly, this ER sub-compartment is composed of highly mobile vesicles containing the NMDAR subunits NR1 and NR2B, the microtubule-dependent motor protein KIF17, and the postsynaptic adaptor proteins CASK and SAP97. Furthermore, our data demonstrate that the retention and trafficking of NMDARs within this ER sub-compartment requires both CASK and SAP97. These data indicate that NMDARs are sorted away from AMPARs via a non-conventional secretory pathway that utilizes dendritic Golgi outposts.Synaptic plasticity is dependent on the differential sorting, delivery and retention of neurotransmitter receptors, but the mechanisms underlying these processes are poorly understood. We found that differential sorting of glutamate receptor subtypes began in the endoplasmic reticulum of rat hippocampal neurons. As AMPA receptors (AMPARs) were trafficked to the plasma membrane via the conventional somatic Golgi network, NMDA receptors (NMDARs) were diverted from the somatic endoplasmic reticulum into a specialized endoplasmic reticulum subcompartment that bypasses somatic Golgi, merging instead with dendritic Golgi outposts. This endoplasmic reticulum subcompartment was composed of highly mobile vesicles containing the NMDAR subunits NR1 and NR2B, the microtubule-dependent motor protein KIF17, and the postsynaptic adaptor proteins CASK and SAP97. Our data demonstrate that the retention and trafficking of NMDARs in this endoplasmic reticulum subcompartment requires both CASK and SAP97. These findings indicate that NMDARs are sorted away from AMPARs via a non-conventional secretory pathway that utilizes dendritic Golgi outposts.


Neuron | 2011

v-SNARE Composition Distinguishes Synaptic Vesicle Pools

Zhaolin Hua; Sergio Leal-Ortiz; Sarah M. Foss; Clarissa L. Waites; Craig C. Garner; Susan M. Voglmaier; Robert H. Edwards

Synaptic vesicles belong to two distinct pools, a recycling pool responsible for the evoked release of neurotransmitter and a resting pool unresponsive to stimulation. The uniform appearance of synaptic vesicles has suggested that differences in location or cytoskeletal association account for these differences in function. We now find that the v-SNARE tetanus toxin-insensitive vesicle-associated membrane protein (VAMP7) differs from other synaptic vesicle proteins in its distribution to the two pools, providing evidence that they differ in molecular composition. We also find that both resting and recycling pools undergo spontaneous release, and when activated by deletion of the longin domain, VAMP7 influences the properties of release. Further, the endocytosis that follows evoked and spontaneous release differs in mechanism, and specific sequences confer targeting to the different vesicle pools. The results suggest that different endocytic mechanisms generate synaptic vesicles with different proteins that can endow the vesicles with distinct properties.


Journal of Cell Biology | 2008

Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis

Sergio Leal-Ortiz; Clarissa L. Waites; Ryan T. Terry-Lorenzo; Pedro L. Zamorano; Eckart D. Gundelfinger; Craig C. Garner

Active zones are specialized regions of the presynaptic plasma membrane designed for the efficient and repetitive release of neurotransmitter via synaptic vesicle (SV) exocytosis. Piccolo is a high molecular weight component of the active zone that is hypothesized to participate both in active zone formation and the scaffolding of key molecules involved in SV recycling. In this study, we use interference RNAs to eliminate Piccolo expression from cultured hippocampal neurons to assess its involvement in synapse formation and function. Our data show that Piccolo is not required for glutamatergic synapse formation but does influence presynaptic function by negatively regulating SV exocytosis. Mechanistically, this regulation appears to be calmodulin kinase II–dependent and mediated through the modulation of Synapsin1a dynamics. This function is not shared by the highly homologous protein Bassoon, which indicates that Piccolo has a unique role in coupling the mobilization of SVs in the reserve pool to events within the active zone.


The Journal of Neuroscience | 2009

Synaptic SAP97 Isoforms Regulate AMPA Receptor Dynamics and Access to Presynaptic Glutamate

Clarissa L. Waites; Christian G. Specht; Kai Härtel; Sergio Leal-Ortiz; David Genoux; Dong Li; Renaldo C. Drisdel; Okun Jeyifous; Juliette E. Cheyne; William N. Green; Johanna M. Montgomery; Craig C. Garner

The synaptic insertion of GluR1-containing AMPA-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, mechanisms responsible for GluR1 insertion and retention at the synapse are unclear. The synapse-associated protein SAP97 directly binds GluR1 and participates in its forward trafficking from the Golgi network to the plasma membrane. Whether SAP97 also plays a role in scaffolding GluR1 at the postsynaptic membrane is controversial, attributable to its expression as a collection of alternatively spliced isoforms with ill-defined spatial and temporal distributions. In the present study, we have used live imaging and electrophysiology to demonstrate that two postsynaptic, N-terminal isoforms of SAP97 directly modulate the levels, dynamics, and function of synaptic GluR1-containing AMPARs. Specifically, the unique N-terminal domains confer distinct subsynaptic localizations onto SAP97, targeting the palmitoylated α-isoform to the postsynaptic density (PSD) and the L27 domain-containing β-isoform primarily to non-PSD, perisynaptic regions. Consequently, α- and βSAP97 differentially influence the subsynaptic localization and dynamics of AMPARs by creating binding sites for GluR1-containing receptors within their respective subdomains. These results indicate that N-terminal splicing of SAP97 can control synaptic strength by regulating the distribution of AMPARs and, hence, their responsiveness to presynaptically released glutamate.


The Journal of Neuroscience | 2006

Transsynaptic Signaling by Postsynaptic Synapse-Associated Protein 97

Maria Paz Regalado; Ryan T. Terry-Lorenzo; Clarissa L. Waites; Craig C. Garner; Robert C. Malenka

The molecular mechanisms by which postsynaptic modifications lead to precisely coordinated changes in presynaptic structure and function are primarily unknown. To address this issue, we examined the presynaptic consequences of postsynaptic expression of members of the membrane-associated guanylate kinase family of synaptic scaffolding proteins. Postsynaptic expression of synapse-associated protein 97 (SAP97) increased presynaptic protein content and active zone size to a greater extent than comparable amounts of postsynaptic PSD-95 (postsynaptic density-95) or SAP102. In addition, postsynaptic expression of SAP97 enhanced presynaptic function, as measured by increased FM4-64 dye uptake. The structural presynaptic effects of postsynaptic SAP97 required ligand binding through two of its PDZ (PSD-95/Discs large/zona occludens-1) domains as well as intact N-terminal and guanylate kinase domains. Expression of SAP97 recruited a complex of additional postsynaptic proteins to synapses including glutamate receptor 1, Shank1a, SPAR (spine-associated RapGAP), and proSAP2. Furthermore, inhibition of several different transsynaptic signaling proteins including cadherins, integrins, and EphB receptor/ephrinB significantly reduced the presynaptic growth caused by postsynaptic SAP97. These results suggest that SAP97 may play a central role in the coordinated growth of synapses during development and plasticity by recruiting a complex of postsynaptic proteins that enhances presynaptic terminal growth and function via multiple transsynaptic molecular interactions.


The EMBO Journal | 2013

Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation.

Clarissa L. Waites; Sergio Leal-Ortiz; Nathan Okerlund; Hannah Dalke; Anna Fejtova; Wilko D. Altrock; Eckart D. Gundelfinger; Craig C. Garner

The presynaptic active zone (AZ) is a specialized microdomain designed for the efficient and repetitive release of neurotransmitter. Bassoon and Piccolo are two high molecular weight components of the AZ, with hypothesized roles in its assembly and structural maintenance. However, glutamatergic synapses lacking either protein exhibit relatively minor defects, presumably due to their significant functional redundancy. In the present study, we have used interference RNAs to eliminate both proteins from glutamatergic synapses, and find that they are essential for maintaining synaptic integrity. Loss of Bassoon and Piccolo leads to the aberrant degradation of multiple presynaptic proteins, culminating in synapse degeneration. This phenotype is mediated in part by the E3 ubiquitin ligase Siah1, an interacting partner of Bassoon and Piccolo whose activity is negatively regulated by their conserved zinc finger domains. Our findings demonstrate a novel role for Bassoon and Piccolo as critical regulators of presynaptic ubiquitination and proteostasis.


Cell and Tissue Research | 2006

Synapse development: still looking for the forest, still lost in the trees

Craig C. Garner; Clarissa L. Waites; Noam E. Ziv

Synapse development in the vertebrate central nervous system is a highly orchestrated process occurring not only during early stages of brain development, but also (to a lesser extent) in the mature nervous system. During development, the formation of synapses is intimately linked to the differentiation of neuronal cells, the extension of their axons and dendrites, and the course wiring of the nervous system. Subsequently, the stabilization, elimination, and strengthening of synaptic contacts is coupled to the refinement of axonal and dendritic arbors, to the establishment of functionally meaningful connections, and probably also to the day-to-day acquisition, storage, and retrieval of memories, higher order thought processes, and behavioral patterns.


The Journal of Neuroscience | 2011

Piccolo Regulates the Dynamic Assembly of Presynaptic F-Actin

Clarissa L. Waites; Sergio Leal-Ortiz; Till F.M. Andlauer; Stefan J. Sigrist; Craig C. Garner

Filamentous (F)-actin is a known regulator of the synaptic vesicle (SV) cycle, with roles in SV mobilization, fusion, and endocytosis. However, the molecular pathways that regulate its dynamic assembly within presynaptic boutons remain unclear. In this study, we have used shRNA-mediated knockdown to demonstrate that Piccolo, a multidomain protein of the active zone cytomatrix, is a key regulator of presynaptic F-actin assembly. Boutons lacking Piccolo exhibit enhanced activity-dependent Synapsin1a dispersion and SV exocytosis, and reduced F-actin polymerization and CaMKII recruitment. These phenotypes are rescued by stabilizing F-actin filaments and mimicked by knocking down Profilin2, another regulator of presynaptic F-actin assembly. Importantly, we find that mice with a targeted deletion of exon 14 from the Pclo gene, reported to lack >95% of Piccolo, continue to express multiple Piccolo isoforms. Furthermore, neurons cultured from these mice exhibit no defects in presynaptic F-actin assembly due to the expression of these isoforms at presynaptic boutons. These data reveal that Piccolo regulates neurotransmitter release by facilitating activity-dependent F-actin assembly and the dynamic recruitment of key signaling molecules into presynaptic boutons, and highlight the need for new genetic models with which to study Piccolo loss of function.


Neuron | 2017

Bassoon Controls Presynaptic Autophagy through Atg5

Nathan Okerlund; Katharina Schneider; Sergio Leal-Ortiz; Carolina Montenegro-Venegas; Sally A. Kim; Loren C. Garner; Clarissa L. Waites; Eckart D. Gundelfinger; Richard J. Reimer; Craig C. Garner

Mechanisms regulating the surveillance and clearance of synaptic proteins are not well understood. Intriguingly, the loss of the presynaptic active zone proteins Piccolo and Bassoon triggers the loss of synaptic vesicles (SVs) and compromises synaptic integrity. Here we report that the destruction of SVs in boutons lacking Piccolo and Bassoon was associated with the induction of presynaptic autophagy, a process that depended on poly-ubiquitination, but not the E3 ubiquitin ligase Siah1. Surprisingly, gain or loss of function (LOF) of Bassoon alone suppressed or enhanced presynaptic autophagy, respectively, implying a fundamental role for Bassoon in the local regulation of presynaptic autophagy. Mechanistically, Bassoon was found to interact with Atg5, an E3-like ligase essential for autophagy, and to inhibit the induction of autophagy in heterologous cells. Importantly, Atg5 LOF as well as targeting an Atg5-binding peptide derived from Bassoon inhibited presynaptic autophagy in boutons lacking Piccolo and Bassoon, providing insights into the molecular mechanisms regulating presynaptic autophagy.


The Journal of Physiology | 2011

SAP97 directs NMDA receptor spine targeting and synaptic plasticity.

Dong Li; Christian G. Specht; Clarissa L. Waites; Charlotte Butler-Munro; Sergio Leal-Ortiz; Janie W. Foote; David Genoux; Craig C. Garner; Johanna M. Montgomery

Abstract  SAP97 is a multidomain scaffold protein implicated in the forward trafficking and synaptic localization of NMDA‐ and AMPA‐type glutamate receptors. Alternative splicing of SAP97 transcripts gives rise to palmitoylated αSAP97 and L27‐domain containing βSAP97 isoforms that differentially regulate the subsynaptic localization of GluR1 subunits of AMPA receptors. Here, we examined whether SAP97 isoforms regulate the mechanisms underlying long‐term potentiation (LTP) and depression (LTD) and find that both α‐ and β‐forms of SAP97 impair LTP but enhance LTD via independent isoform‐specific mechanisms. Live imaging of α‐ and βSAP97 revealed that the altered synaptic plasticity was not due to activity‐dependent changes in SAP97 localization or exchange kinetics. However, by recording from pairs of synaptically coupled hippocampal neurons, we show that αSAP97 occludes LTP by enhancing the levels of postsynaptic AMPA receptors, while βSAP97 blocks LTP by reducing the synaptic localization of NMDA receptors. Examination of the surface pools of AMPA and NMDA receptors indicates that αSAP97 selectively regulates the synaptic pool of AMPA receptors, whereas βSAP97 regulates the extrasynaptic pools of both AMPA and NMDA receptors. Knockdown of βSAP97 increases the synaptic localization of both AMPA and NMDA receptors, showing that endogenous βSAP97 restricts glutamate receptor expression at excitatory synapses. This isoform‐dependent differential regulation of synaptic versus extrasynaptic pools of glutamate receptors will determine how many receptors are available for the induction and the expression of synaptic plasticity. Our data support a model wherein SAP97 isoforms can regulate the ability of synapses to undergo plasticity by controlling the surface distribution of AMPA and NMDA receptors.

Collaboration


Dive into the Clarissa L. Waites's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eckart D. Gundelfinger

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip K. Tan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge