Clark R. Chapman
Southwest Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clark R. Chapman.
Icarus | 1988
J.D. Drummond; Clark R. Chapman; Donald R. Davis
Abstract Twenty-five of the twenty-six asteroids included in the “photometric geodesy” program (S.J. Weidenschilling, C.R. Chapman, D.R. Davis, R. Greenberg, D.H. Levy, and S. Vail, Icarus 70, 191–245, 1987) have been studied on the assumption that asteroids can be modeled as smooth, featureless, triaxial ellipsoids rotating about their shortest axes. Using all lightcurves available, rotational poles have been obtained by three independent methods. With these poles each asteroids sidereal period and triaxial ellipsoid axial ratios have been determined, along with the associated photometric parameters. The studied asteroids seem to have rotational poles that do not lie near their orbital planes. Two distinct types of asteroids may be indicated by a stronger solar phase angle-amplitude dependence (perhaps due to a rougher surface?) and a weaker phase-amplitude (smoother?) relation. Although no strict hydrostatic equilibrium shape is found, several asteroids are close enough to equilibrium figures to allow an estimate of their densities to be made under certain assumptions.
Nature | 1998
Michael H. Carr; Michael Belton; Clark R. Chapman; Merton E. Davies; P. E. Geissler; Richard Greenberg; Alfred S. McEwen; Bruce R. Tufts; Ronald Greeley; Robert J. Sullivan; James W. Head; Robert T. Pappalardo; Kenneth P. Klaasen; Torrence V. Johnson; James M. Kaufman; David A. Senske; Jeffrey M. Moore; G. Neukum; Gerald Schubert; Joseph A. Burns; Peter C. Thomas; Joseph Veverka
Ground-based spectroscopy of Jupiters moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europas surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europas thin outer ice shell might be separated from the moons silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile ‘icebergs’. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower-resolution observations of much larger regions suggest that the phenomena reported here are widespread.
Planetary and Space Science | 2001
Sean C. Solomon; Ralph L. McNutt; Robert E. Gold; Mario H. Acuna; D. N. Baker; William V. Boynton; Clark R. Chapman; Andrew F. Cheng; G. Gloeckler; James W. Head; S. M. Krimigis; William E. McClintock; Scott L. Murchie; Stanton J. Peale; Roger J. Phillips; Mark S. Robinson; James A. Slavin; David E. Smith; Robert G. Strom; Jacob I. Trombka; Maria T. Zuber
Abstract Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercurys anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercurys geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercurys core, and the processes controlling volatile species in Mercurys polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet–visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercurys exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.
Journal of Geophysical Research | 1999
Robert T. Pappalardo; M. J. S. Belton; H. H. Breneman; Michael H. Carr; Clark R. Chapman; G. C. Collins; Tilmann Denk; Sarah A. Fagents; P. E. Geissler; Bernd Giese; Ronald Greeley; Richard Greenberg; James W. Head; Paul Helfenstein; Gregory V. Hoppa; S. D. Kadel; Kenneth P. Klaasen; James Klemaszewski; K. P. Magee; Alfred S. McEwen; Jeffrey M. Moore; W. B. Moore; G. Neukum; Cynthia B. Phillips; Louise M. Prockter; Gerald Schubert; David A. Senske; R. Sullivan; B. R. Tufts; Elizabeth P. Turtle
It has been proposed that Jupiters satellite Europa currently possesses a global subsurface ocean of liquid water. Galileo gravity data verify that the satellite is differentiated into an outer H2O layer about 100 km thick but cannot determine the current physical state of this layer (liquid or solid). Here we summarize the geological evidence regarding an extant subsurface ocean, concentrating on Galileo imaging data. We describe and assess nine pertinent lines of geological evidence: impact morphologies, lenticulae, cryovolcanic features, pull-apart bands, chaos, ridges, surface frosts, topography, and global tectonics. An internal ocean would be a simple and comprehensive explanation for a broad range of observations; however, we cannot rule out the possibility that all of the surface morphologies could be due to processes in warm, soft ice with only localized or partial melting. Two different models of impact flux imply very different surface ages for Europa; the model favored here indicates an average age of ∼50 Myr. Searches for evidence of current geological activity on Europa, such as plumes or surface changes, have yielded negative results to date. The current existence of a global subsurface ocean, while attractive in explaining the observations, remains inconclusive. Future geophysical measurements are essential to determine conclusively whether or not there is a liquid water ocean within Europa today.
Icarus | 1975
Clark R. Chapman; David Morrison; Ben Zellner
Abstract The surface compositions of 110 asteroids are analyzed from statistically representative data sets of polarimetry as a function of phase angle, broad-band radiometry near 10 and 20 μm, and visible and near-infrared spectrophotometry. A comparison of albedos and diameters determined by polarimetry and radiometry shows that a modest upward revision of the radiometric albedo scale is needed and that a single law relating the slope of the polarization-phase curve to geometric albedo may not hold for very dark asteroids. We present reliable adopted albedos and diameters for 56 objects. Roughdi ameters for 52 additional objects are obtained from spectrophotometry using a correlation between albedo and color. Corrections for sampling bias permit investigation of asteroid compositions as a function of diameter, orbit, and other parameters. More than 90% of the minor planets fall into two broad compositional groups, defined by several optical parameters, designated by the symbols C and S. Comparisons with meteorite spectral albedo curves suggest that the two groups are compositionally similar to carbonaceous and stony-metallic meteorites, respectively. C-type asteroids predominate in the belt, especially in the outer half. An unusual distribution of compositions is found between 2.77 and 3.0 AU. Many S-type objects have diameters of 100–200 km; C-type objects are much more common at both larger and smaller sizes. Vesta is unique, being apparently the only differentiated asteroid remaining intact in the belt. The largest C-type objects are compositionally distinct from smaller ones and possibly are metamorphosed. We sketch some implications for meteoritics and for the early history of the solar system and point to the need for further systematic sampling of smaller and fainter objects by these three observational techniques.
Icarus | 1985
Donald R. Davis; Clark R. Chapman; Richard Greenberg
Abstract Collisional evolution studies of asteroids indicate that the initial asteroid population at the time mean collisional velocities were pumped up to ∼5 km/sec was only modestly larger than it is today; i.e., the asteroid belt was already depleted relative to the mean surface density elsewhere in the planetary region. Numerical simulations of the collisional evolution of hypothetical initial asteroid populations have been run, subject to three constraints: they must (a) evolve to the present observed asteroid size distribution, (b) preserve Vestas basaltic crust, and (c) produce at least the observed number of major Hirayama families. A “runaway growth” initial asteroid population distribution is found to best satisfy these constraints. A new model is presented for calculating the fragmental size distribution for the disruption of large, gravitationally bound bodies in which the material strength is increased by hydrostatic self-compression. This model predicts that large asteroid behave as intrinsically strong bodies, even if they have had a history of being collisionally fractured. This model, when applied to the breakup of the Themis and Eos family parent bodies, gives size distributions in reasonably good agreement with those observed.
Science | 2011
James W. Head; Clark R. Chapman; Robert G. Strom; Caleb I. Fassett; Brett W. Denevi; David T. Blewett; Carolyn M. Ernst; Thomas R. Watters; Sean C. Solomon; Scott L. Murchie; Louise M. Prockter; Nancy L. Chabot; Jeffrey J. Gillis-Davis; Jennifer L. Whitten; Timothy A. Goudge; David M.H. Baker; Debra M. Hurwitz; Lillian R. Ostrach; Zhiyong Xiao; William Jon Merline; Laura Kerber; James L. Dickson; Jürgen Oberst; Paul K. Byrne; Christian Klimczak; Larry R. Nittler
MESSENGER observations of Mercury’s high northern latitudes reveal a contiguous area of volcanic smooth plains covering more than ~6% of the surface that were emplaced in a flood lava mode, consistent with average crustal compositions broadly similar to terrestrial komatiites. MESSENGER observations from Mercury orbit reveal that a large contiguous expanse of smooth plains covers much of Mercury’s high northern latitudes and occupies more than 6% of the planet’s surface area. These plains are smooth, embay other landforms, are distinct in color, show several flow features, and partially or completely bury impact craters, the sizes of which indicate plains thicknesses of more than 1 kilometer and multiple phases of emplacement. These characteristics, as well as associated features, interpreted to have formed by thermal erosion, indicate emplacement in a flood-basalt style, consistent with x-ray spectrometric data indicating surface compositions intermediate between those of basalts and komatiites. The plains formed after the Caloris impact basin, confirming that volcanism was a globally extensive process in Mercury’s post–heavy bombardment era.
Science | 1992
M. J. S. Belton; Joseph Veverka; Peter C. Thomas; Paul Helfenstein; D. P. Simonelli; Clark R. Chapman; Merton E. Davies; Ronald Greeley; Richard Greenberg; James W. Head; Scott L. Murchie; Kenneth P. Klaasen; Torrence V. Johnson; Alfred S. McEwen; David Morrison; Gerhard Neukum; Fraser P. Fanale; Clifford D. Anger; Michael H. Carr; Carl B. Pilcher
Galileo images of Gaspra reveal it to be an irregularly shaped object (19 by 12 by 11 kilometers) that appears to have been created by a catastrophic collisional disruption of a precursor parent body. The cratering age of the surface is about 200 million years. Subtle albedo and color variations appear to correlate with morphological features: Brighter materials are associated with craters especially along the crests of ridges, have a stronger 1-micrometer absorption, and may represent freshly excavated mafic materials; darker materials exhibiting a significantly weaker 1-micrometer absorption appear concentrated in interridge areas. One explanation of these patterns is that Gaspra is covered with a thin regolith and that some of this material has migrated downslope in some areas.
Science | 2008
James W. Head; Scott L. Murchie; Louise M. Prockter; Mark S. Robinson; Sean C. Solomon; Robert G. Strom; Clark R. Chapman; Thomas R. Watters; William E. McClintock; David T. Blewett; Jeffrey J. Gillis-Davis
The origin of plains on Mercury, whether by volcanic flooding or impact ejecta ponding, has been controversial since the Mariner 10 flybys (1974–75). High-resolution images (down to 150 meters per pixel) obtained during the first MESSENGER flyby show evidence for volcanic vents around the Caloris basin inner margin and demonstrate that plains were emplaced sequentially inside and adjacent to numerous large impact craters, to thicknesses in excess of several kilometers. Radial graben and a floor-fractured crater may indicate intrusive activity. These observations, coupled with additional evidence from color images and impact crater size-frequency distributions, support a volcanic origin for several regions of plains and substantiate the important role of volcanism in the geological history of Mercury.
Science | 1996
M. J. S. Belton; James W. Head; A. P. Ingersoll; Ronald Greeley; Alfred S. McEwen; Kenneth P. Klaasen; David A. Senske; Robert T. Pappalardo; G. C. Collins; Ashwin R. Vasavada; Robert John Sullivan; D. P. Simonelli; P. E. Geissler; Michael H. Carr; Merton E. Davies; J. Veverka; Peter J. Gierasch; Donald J. Banfield; M. Bell; Clark R. Chapman; Clifford D. Anger; Richard Greenberg; G. Neukum; Carl B. Pilcher; R. F. Beebe; Joseph A. Burns; Fraser P. Fanale; W. Ip; Torrence V. Johnson; David R. Morrison
The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiters Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.