Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Veverka is active.

Publication


Featured researches published by Joseph Veverka.


Science | 1979

The Jupiter System Through the Eyes of Voyager 1

Bradford A. Smith; Laurence A. Soderblom; Torrence V. Johnson; Andrew P. Ingersoll; Stewart A. Collins; Eugene M. Shoemaker; Garry E. Hunt; Harold Masursky; Michael H. Carr; Merton E. Davies; Allan F. Cook; Joseph M. Boyce; G. Edward Danielson; Tobias Owen; Carl Sagan; R. F. Beebe; Joseph Veverka; Robert G. Strom; John F. McCauley; David Morrison; Geoffrey Briggs; V. E. Suomi

The cameras aboard Voyager 1 have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planets atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions—the interaction of cloud systems—display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto.


Science | 1979

The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results

Bradford A. Smith; Laurence A. Soderblom; R. F. Beebe; Joseph M. Boyce; Geoffrey Briggs; Michael H. Carr; Stewart A. Collins; Allan F. Cook; G. Edward Danielson; Merton E. Davies; Garry E. Hunt; Andrew P. Ingersoll; Torrence V. Johnson; Harold Masursky; John F. McCauley; David Morrison; Tobias Owen; Carl Sagan; Eugene M. Shoemaker; Robert G. Strom; V. E. Suomi; Joseph Veverka

Voyager 2, during its encounter with the Jupiter system, provided images that both complement and supplement in important ways the Voyager 1 images. While many changes have been observed in Jupiters visual appearance, few, yet significant, changes have been detected in the principal atmospheric currents. Jupiters ring system is strongly forward scattering at visual wavelengths and consists of a narrow annulus of highest particle density, within which is a broader region in which the density is lower. On Io, changes are observed in eruptive activity, plume structure, and surface albedo patterns. Europas surface retains little or no record of intense meteorite bombardment, but does reveal a complex and, as yet, little-understood system of overlapping bright and dark linear features. Ganymede is found to have at least one unit of heavily cratered terrain on a surface that otherwise suggests widespread tectonism. Except for two large ringed basins, Callistos entire surface is heavily cratered.


Nature | 1998

Evidence for a subsurface ocean on Europa

Michael H. Carr; Michael Belton; Clark R. Chapman; Merton E. Davies; P. E. Geissler; Richard Greenberg; Alfred S. McEwen; Bruce R. Tufts; Ronald Greeley; Robert J. Sullivan; James W. Head; Robert T. Pappalardo; Kenneth P. Klaasen; Torrence V. Johnson; James M. Kaufman; David A. Senske; Jeffrey M. Moore; G. Neukum; Gerald Schubert; Joseph A. Burns; Peter C. Thomas; Joseph Veverka

Ground-based spectroscopy of Jupiters moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europas surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europas thin outer ice shell might be separated from the moons silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile ‘icebergs’. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower-resolution observations of much larger regions suggest that the phenomena reported here are widespread.


Nature | 2005

Imaging of Titan from the Cassini spacecraft

Carolyn C. Porco; Emily Baker; John M. Barbara; K. A. Beurle; Andre Brahic; Joseph A. Burns; Sebastien Charnoz; N. J. Cooper; Douglas Duane Dawson; Anthony D. Del Genio; Tilmann Denk; Luke Dones; Ulyana A. Dyudina; Michael W. Evans; S. Fussner; Bernd Giese; Kevin R. Grazier; Paul Helfenstein; Andrew P. Ingersoll; Robert A. Jacobson; Torrence V. Johnson; Alfred S. McEwen; Carl D. Murray; Gerhard Neukum; W. M. Owen; Jason Perry; Thomas Roatsch; Joseph Nicholas Spitale; Steven W. Squyres; Peter C. Thomas

Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titans nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titans history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150–200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.


Science | 2011

EPOXI at Comet Hartley 2

Michael F. A'Hearn; Michael Belton; W. Alan Delamere; Lori Michelle Feaga; D. L. Hampton; J. Kissel; Kenneth P. Klaasen; Lucy A. McFadden; Karen J. Meech; H. Jay Melosh; Peter H. Schultz; Jessica M. Sunshine; Peter C. Thomas; Joseph Veverka; Dennis D. Wellnitz; D. K. Yeomans; Sebastien Besse; D. Bodewits; Timothy Bowling; Brian T. Carcich; Steven M. Collins; Tony L. Farnham; Olivier Groussin; Brendan Hermalyn; Michael Shawn Kelley; Jian-Yang Li; Don J. Lindler; Carey Michael Lisse; Stephanie McLaughlin; Frederic Merlin

In situ observations show that comet Hartley 2 is an unusually hyperactive comet. Understanding how comets work—what drives their activity—is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO2, which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus.


Icarus | 1987

Photometric properties of lunar terrains derived from Hapke's equation

Paul Helfenstein; Joseph Veverka

The photometric parameters of B. W. Hapkes (1986, Icarus 67, 264–280) equation are fit to the lunar disk-integrated visual lightcurve and to disk-resolved data of R. W. Shorthill, J. M. Saari, F. E. Baird, and J. R. LeCompte (1969, Photometric Properties of Selected Lunar Features, NASA Contractor Report CR-1429) for dark, average, and bright lunar terrains. The lunar nearside geometric albedo and phase integral computed from the disk-integrated results are consistent with those of earlier investigators. The single scattering albedos of disk-resolved average and bright lunar terrains are systematically larger than that of lunar mare. Average particles in dark terrain regoliths are more backscattering than those in average and bright lunar terrains. The angular width of the opposition surge is greatest in dark terrains and is found to be best explained by modest differences in regolith particle-size distributions which might accompany the normal regolith maturation process. The total amplitude of the opposition surge for dark terrains is larger than for average and bright terrains. This result appears to be a consequence of the fact that in opaque particles, a larger fraction of singly scattered light at zero phase comes from first-surface reflection. The average subcentimeter macroscopic roughness of dark terrains is significantly lower than that of average and bright terrains. The relative magnitude of this difference is consistent with that obtained from radar measurements at decimeter scales.


Nature | 1999

Evidence for recent volcanism on Mars from crater counts

William K. Hartmann; Michael C. Malin; Alfred S. McEwen; Michael H. Carr; Larry Soderblom; Peter C. Thomas; Ed Danielson; P. B. James; Joseph Veverka

Impact craters help characterize the age of a planetary surface, because they accumulate with time. They also provide useful constraints on the importance of surface erosion, as such processes will preferentially remove the smaller craters. Earlier studies of martian crater populations revealed that erosion and dust deposition are important processes on Mars. They disagreed, however, on the age of the youngest volcanism, . These earlier studies were limited by image resolution to craters larger than a few hundred metres in diameter. Here we report an analysis, using new images obtained by the Mars Global Surveyor spacecraft, of crater populations that extend the size distribution down to about 16 m. Our results indicate a wide range of surface ages, with one region—lava flows within the Arsia Mons caldera—that we estimate to be no older than 40–100 million years. We suggest that volcanism is a continuing process on Mars.


Science | 1992

Galileo encounter with 951 gaspra: first pictures of an asteroid.

M. J. S. Belton; Joseph Veverka; Peter C. Thomas; Paul Helfenstein; D. P. Simonelli; Clark R. Chapman; Merton E. Davies; Ronald Greeley; Richard Greenberg; James W. Head; Scott L. Murchie; Kenneth P. Klaasen; Torrence V. Johnson; Alfred S. McEwen; David Morrison; Gerhard Neukum; Fraser P. Fanale; Clifford D. Anger; Michael H. Carr; Carl B. Pilcher

Galileo images of Gaspra reveal it to be an irregularly shaped object (19 by 12 by 11 kilometers) that appears to have been created by a catastrophic collisional disruption of a precursor parent body. The cratering age of the surface is about 200 million years. Subtle albedo and color variations appear to correlate with morphological features: Brighter materials are associated with craters especially along the crests of ridges, have a stronger 1-micrometer absorption, and may represent freshly excavated mafic materials; darker materials exhibiting a significantly weaker 1-micrometer absorption appear concentrated in interridge areas. One explanation of these patterns is that Gaspra is covered with a thin regolith and that some of this material has migrated downslope in some areas.


Icarus | 1972

Variable features on Mars: Preliminary mariner 9 television results

Carl Sagan; Joseph Veverka; P. Fox; Russell Dubisch; Joshua Lederberg; Elliott C. Levinthal; Lynn Quam; R. B. Tucker; James B. Pollack; Bradford A. Smith

Abstract Systematic Mariner 9 photography of a range of Martian surface features, observed with all three photometric angles approximately invariant, reveals three general categories of albedo variations: (1) an essentially uniform contrast enhancement due to the dissipation of the dust storm; (2) the appearance of splotches, irregular dark markings at least partially related to topography; and (3) the development of both bright and dark linear streaks, generally emanating from craters. Some splotches and streaks vary on characteristic timescales ∼2 weeks; they have characteristic dimensions of kilometers to tens of kilometers. The loci of these features appear in some cases to correspond well to the ground-based albedo markings, and the integrated time variation of splotches and streaks is suggested to produce the classical “seasonal” and secular albedo changes on Mars. The morphology and variability of streaks and splotches, and the resolution of at least one splotch into an extensive dune system, implicates windblown dust as the principal agent of Martian albedo differences and variability.


Nature | 2001

The nature of ponded deposits on Eros

Mark S. Robinson; Peter C. Thomas; Joseph Veverka; Scott L. Murchie; Brian T. Carcich

One of the surprises of the NEAR-Shoemaker mission was that Eross surface exhibits a wide variety of landforms, which are indicative of a global covering of loose fragmental debris. At one extreme in roughness is the Shoemaker Regio area, which is characterized by a high density of boulders up to 100 m across, slumps, slides, and finer blanketing material. At the other extreme are distinctive, flat deposits that appear smooth down to a resolution of 1.2 cm per pixel. Here we report the results of global mapping and colour analysis of these smooth deposits. They have formed most efficiently in restricted areas, and appear to be the result of deposition of finer material sorted from the upper portion of the asteroids regolith. The smooth deposits constitute a family of features with a range of morphologies, but all appear to be the result of sedimentation. The geography of the deposits is consistent with some predicted aspects of photoelectric sorting, but these exotic transport and depositional mechanisms are not well understood. Deposits with the properties seen on Eros have no obvious analogues in previous lunar or asteroid data.

Collaboration


Dive into the Joseph Veverka's collaboration.

Top Co-Authors

Avatar

Peter C. Thomas

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Clark R. Chapman

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Belton

Kitt Peak National Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth P. Klaasen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald Greeley

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge