Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude W. dePamphilis is active.

Publication


Featured researches published by Claude W. dePamphilis.


Nature | 2011

Ancestral polyploidy in seed plants and angiosperms

Yuannian Jiao; Norman J. Wickett; Saravanaraj Ayyampalayam; André S. Chanderbali; Lena Landherr; Paula E. Ralph; Lynn P. Tomsho; Yi Hu; Haiying Liang; Pamela S. Soltis; Douglas E. Soltis; Sandra W. Clifton; Scott E. Schlarbaum; Stephan C. Schuster; Hong Ma; Jim Leebens-Mack; Claude W. dePamphilis

Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications—one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.


Nature | 2008

The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)

Ray Ming; Shaobin Hou; Yun Feng; Qingyi Yu; Alexandre Dionne-Laporte; Jimmy H. Saw; Pavel Senin; Wei Wang; Benjamin V. Ly; Kanako L. T. Lewis; Lu Feng; Meghan R. Jones; Rachel L. Skelton; Jan E. Murray; Cuixia Chen; Wubin Qian; Junguo Shen; Peng Du; Moriah Eustice; Eric J. Tong; Haibao Tang; Eric Lyons; Robert E. Paull; Todd P. Michael; Kerr Wall; Danny W. Rice; Henrik H. Albert; Ming Li Wang; Yun J. Zhu; Michael C. Schatz

Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.


American Journal of Botany | 2001

Disintegration of the scrophulariaceae.

Richard G. Olmstead; Claude W. dePamphilis; Andrea D. Wolfe; Nelson D. Young; Wayne J. Elisons; Patrick A. Reeves

A molecular systematic study of Scrophulariaceae sensu lato using DNA sequences of three plastid genes (rbcL, ndhF, and rps2) revealed at least five distinct monophyletic groups. Thirty-nine genera representing 24 tribes of the Scrophulariaceae s.l. (sensu lato) were analyzed along with representatives of 15 other families of Lamiales. The Scrophulariaceae s.s. (sensu stricto) include part or all of tribes Aptosimeae, Hemimerideae, Leucophylleae, Manuleae, Selagineae, and Verbasceae (= Scrophularieae) and the conventional families Buddlejaceae and Myoporaceae. Veronicaceae includes all or part of tribes Angelonieae, Antirrhineae, Cheloneae, Digitaleae, and Gratioleae and the conventional families Callitrichaceae, Globulariaceae, Hippuridaceae, and Plantaginaceae. The Orobanchaceae include tribes Buchnereae, Rhinantheae, and the conventional Orobanchaceae. All sampled members of Orobanchaceae are parasitic, except Lindenbergia, which is sister to the rest of the family. Family Calceolariaceae Olmstead is newly erected herein to recognize the phylogenetic distinctiveness of tribe Calceolarieae. The Calceolariaceae are close to the base of the Lamiales. The Stilbaceae are expanded by the inclusion of Halleria. Mimulus does not belong in any of these five groups.


Plant Molecular Biology | 2011

The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

Susann Wicke; Gerald M. Schneeweiss; Claude W. dePamphilis; Kai Müller; Dietmar Quandt

This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.


Genetics | 2005

The Evolution of the SEPALLATA Subfamily of MADS-Box Genes: A Preangiosperm Origin With Multiple Duplications Throughout Angiosperm History

Laura M. Zahn; Hongzhi Kong; Jim Leebens-Mack; Sangtae Kim; Pamela S. Soltis; Lena Landherr; Douglas E. Soltis; Claude W. dePamphilis; Hong Ma

Members of the SEPALLATA (SEP) MADS-box subfamily are required for specifying the “floral state” by contributing to floral organ and meristem identity. SEP genes have not been detected in gymnosperms and seem to have originated since the lineage leading to extant angiosperms diverged from extant gymnosperms. Therefore, both functional and evolutionary studies suggest that SEP genes may have been critical for the origin of the flower. To gain insights into the evolution of SEP genes, we isolated nine genes from plants that occupy phylogenetically important positions. Phylogenetic analyses of SEP sequences show that several gene duplications occurred during the evolution of this subfamily, providing potential opportunities for functional divergence. The first duplication occurred prior to the origin of the extant angiosperms, resulting in the AGL2/3/4 and AGL9 clades. Subsequent duplications occurred within these clades in the eudicots and monocots. The timing of the first SEP duplication approximately coincides with duplications in the DEFICIENS/GLOBOSA and AGAMOUS MADS-box subfamilies, which may have resulted from either a proposed genome-wide duplication in the ancestor of extant angiosperms or multiple independent duplication events. Regardless of the mechanism of gene duplication, these pairs of duplicate transcription factors provided new possibilities of genetic interactions that may have been important in the origin of the flower.


Proceedings of the National Academy of Sciences of the United States of America | 2011

FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar

Chuan Yu Hsu; Joshua P. Adams; Hyejin Kim; Kyoungok No; Caiping Ma; Steven H. Strauss; Jenny Drnevich; Lindsay Vandervelde; Jeffrey D. Ellis; Brandon M. Rice; Norman J. Wickett; Lee E. Gunter; Gerald A. Tuskan; Amy M. Brunner; Grier P. Page; Abdelali Barakat; John E. Carlson; Claude W. dePamphilis; Dawn S. Luthe; Cetin Yuceer

Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.


Methods in Enzymology | 2005

Methods for Obtaining and Analyzing Whole Chloroplast Genome Sequences

Robert K. Jansen; Linda A. Raubeson; Jeffrey L. Boore; Claude W. dePamphilis; Timothy W. Chumley; Rosemarie C. Haberle; Stacia K. Wyman; Andrew J. Alverson; Rhiannon Peery; Sallie J. Herman; H. Matthew Fourcade; Jennifer V. Kuehl; Joel R. McNeal; Jim Leebens-Mack; Liying Cui

During the past decade, there has been a rapid increase in our understanding of plastid genome organization and evolution due to the availability of many new completely sequenced genomes. There are 45 complete genomes published and ongoing projects are likely to increase this sampling to nearly 200 genomes during the next 5 years. Several groups of researchers including ours have been developing new techniques for gathering and analyzing entire plastid genome sequences and details of these developments are summarized in this chapter. The most important developments that enhance our ability to generate whole chloroplast genome sequences involve the generation of pure fractions of chloroplast genomes by whole genome amplification using rolling circle amplification, cloning genomes into Fosmid or bacterial artificial chromosome (BAC) vectors, and the development of an organellar annotation program (Dual Organellar GenoMe Annotator [DOGMA]). In addition to providing details of these methods, we provide an overview of methods for analyzing complete plastid genome sequences for repeats and gene content, as well as approaches for using gene order and sequence data for phylogeny reconstruction. This explosive increase in the number of sequenced plastid genomes and improved computational tools will provide many insights into the evolution of these genomes and much new data for assessing relationships at deep nodes in plants and other photosynthetic organisms.


PLOS ONE | 2010

RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species

Rajwinder Singh; Abby L. Levitt; Edwin G. Rajotte; Edward C. Holmes; Nancy Ostiguy; Dennis vanEngelsdorp; W. Ian Lipkin; Claude W. dePamphilis; Amy L. Toth; Diana Cox-Foster

Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general.


GigaScience | 2014

Data access for the 1,000 Plants (1KP) project

Naim Matasci; Ling Hong Hung; Zhixiang Yan; Eric J. Carpenter; Norman J. Wickett; Siavash Mirarab; Nam Phuong Nguyen; Tandy J. Warnow; Saravanaraj Ayyampalayam; Michael S. Barker; J. G. Burleigh; Matthew A. Gitzendanner; Eric Wafula; Joshua P. Der; Claude W. dePamphilis; Béatrice Roure; Hervé Philippe; Brad R. Ruhfel; Nicholas W. Miles; Sean W. Graham; Sarah Mathews; Barbara Surek; Michael Melkonian; Douglas E. Soltis; Pamela S. Soltis; Carl J. Rothfels; Lisa Pokorny; Jonathan Shaw; Lisa DeGironimo; Dennis W. Stevenson

The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets.


Plant Physiology | 2004

Genome-wide analysis of the cyclin family in arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins

Guanfang Wang; Hongzhi Kong; Yujin Sun; Xiaohong Zhang; Wei Zhang; Naomi Altman; Claude W. dePamphilis; Hong Ma

Cyclins are primary regulators of the activity of cyclin-dependent kinases, which are known to play critical roles in controlling eukaryotic cell cycle progression. While there has been extensive research on cell cycle mechanisms and cyclin function in animals and yeasts, only a small number of plant cyclins have been characterized functionally. In this paper, we describe an exhaustive search for cyclin genes in the Arabidopsis genome and among available sequences from other vascular plants. Based on phylogenetic analysis, we define 10 classes of plant cyclins, four of which are plant-specific, and a fifth is shared between plants and protists but not animals. Microarray and reverse transcriptase-polymerase chain reaction analyses further provide expression profiles of cyclin genes in different tissues of wild-type Arabidopsis plants. Comparative phylogenetic studies of 174 plant cyclins were also performed. The phylogenetic results imply that the cyclin gene family in plants has experienced more gene duplication events than in animals. Expression patterns and phylogenetic analyses of Arabidopsis cyclin genes suggest potential gene redundancy among members belonging to the same group. We discuss possible divergence and conservation of some plant cyclins. Our study provides an opportunity to rapidly assess the position of plant cyclin genes in terms of evolution and classification, serving as a guide for further functional study of plant cyclins.

Collaboration


Dive into the Claude W. dePamphilis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela S. Soltis

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Wafula

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

P. Kerr Wall

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John E. Carlson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Joshua P. Der

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lena Landherr

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge