Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua P. Der is active.

Publication


Featured researches published by Joshua P. Der.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Phylotranscriptomic analysis of the origin and early diversification of land plants

Norman J. Wickett; Siavash Mirarab; Nam Phuong Nguyen; Tandy J. Warnow; Eric J. Carpenter; Naim Matasci; Saravanaraj Ayyampalayam; Michael S. Barker; J. Gordon Burleigh; Matthew A. Gitzendanner; Brad R. Ruhfel; Eric Wafula; Joshua P. Der; Sean W. Graham; Sarah Mathews; Michael Melkonian; Douglas E. Soltis; Pamela S. Soltis; Nicholas W. Miles; Carl J. Rothfels; Lisa Pokorny; A. Jonathan Shaw; Lisa De Gironimo; Dennis W. Stevenson; Barbara Surek; Juan Carlos Villarreal; Béatrice Roure; Hervé Philippe; Claude W. de Pamphilis; Tao Chen

Significance Early branching events in the diversification of land plants and closely related algal lineages remain fundamental and unresolved questions in plant evolutionary biology. Accurate reconstructions of these relationships are critical for testing hypotheses of character evolution: for example, the origins of the embryo, vascular tissue, seeds, and flowers. We investigated relationships among streptophyte algae and land plants using the largest set of nuclear genes that has been applied to this problem to date. Hypothesized relationships were rigorously tested through a series of analyses to assess systematic errors in phylogenetic inference caused by sampling artifacts and model misspecification. Results support some generally accepted phylogenetic hypotheses, while rejecting others. This work provides a new framework for studies of land plant evolution. Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.


GigaScience | 2014

Data access for the 1,000 Plants (1KP) project

Naim Matasci; Ling Hong Hung; Zhixiang Yan; Eric J. Carpenter; Norman J. Wickett; Siavash Mirarab; Nam Phuong Nguyen; Tandy J. Warnow; Saravanaraj Ayyampalayam; Michael S. Barker; J. G. Burleigh; Matthew A. Gitzendanner; Eric Wafula; Joshua P. Der; Claude W. dePamphilis; Béatrice Roure; Hervé Philippe; Brad R. Ruhfel; Nicholas W. Miles; Sean W. Graham; Sarah Mathews; Barbara Surek; Michael Melkonian; Douglas E. Soltis; Pamela S. Soltis; Carl J. Rothfels; Lisa Pokorny; Jonathan Shaw; Lisa DeGironimo; Dennis W. Stevenson

The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The butterfly plant arms-race escalated by gene and genome duplications

Patrick P. Edger; Hanna M. Heidel-Fischer; Michaël Bekaert; Jadranka Rota; Gernot Glöckner; Adrian E. Platts; David G. Heckel; Joshua P. Der; Eric Wafula; Michelle Tang; Johannes A. Hofberger; Ann Smithson; Jocelyn C. Hall; Matthieu Blanchette; Thomas E. Bureau; Stephen I. Wright; Claude W. dePamphilis; M. Eric Schranz; Michael S. Barker; Gavin C. Conant; Niklas Wahlberg; Heiko Vogel; J. Chris Pires; Christopher W. Wheat

Significance This research uncovers the mechanisms of an ancient arms race between butterflies and plants, seen today in countless gardens as caterpillars of cabbage butterflies that devour cabbage crop varieties. Nearly 90 million years ago, the ancestors of Brassica (mustards, cabbage) and related plants developed a chemical defense called glucosinolates. While very toxic to most insects, humans experience glucosinolates as the sharp taste in wasabi, horseradish and mustard. Here we report that this triggered a chemical arms race that escalated in complexity over time. By investigating the evolutionary histories of these plants and insects, we found that major increases in chemical defense complexity were followed by butterflies evolving countertactics to allow them to continue to attack and feed on the plants. Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits.


BMC Genomics | 2011

De novo Characterization of the Gametophyte Transcriptome in Bracken Fern, Pteridium Aquilinum

Joshua P. Der; Michael S. Barker; Norman J. Wickett; Claude W. dePamphilis; Paul G. Wolf

BackgroundBecause of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (Pteridium aquilinum) to develop genomic resources for evolutionary studies.Results681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled de novo into 56,256 unique sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of Arabidopsis, Selaginella and Physcomitrella, and identified a substantial number of potentially novel fern genes. By comparing the list of Arabidopsis genes identified by blast with a list of gametophyte-specific Arabidopsis genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple sequence repeat loci and 689 expressed transposable elements.ConclusionsThis study is the first comprehensive transcriptome analysis for a fern and represents an important scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate the utility of high-throughput sequencing of a normalized cDNA library for de novo transcriptome characterization and gene discovery in a non-model plant.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns

Fay-Wei Li; Juan Carlos Villarreal; Steven Kelly; Carl J. Rothfels; Michael Melkonian; Eftychios Frangedakis; Markus Ruhsam; Erin M. Sigel; Joshua P. Der; Jarmila Pittermann; Dylan O. Burge; Lisa Pokorny; Anders Larsson; Tao Chen; Stina Weststrand; Philip J. Thomas; Eric J. Carpenter; Yong Zhang; Zhijian Tian; Li Chen; Zhixiang Yan; Ying Zhu; Xiao Sun; Jun Wang; Dennis W. Stevenson; Barbara Crandall-Stotler; A. Jonathan Shaw; Michael K. Deyholos; Douglas E. Soltis; Sean W. Graham

Significance Despite being one of the oldest groups of land plants, the majority of living ferns resulted from a relatively recent diversification following the rise of angiosperms. To exploit fully the new habitats created by angiosperm-dominated ecosystems, ferns had to evolve novel adaptive strategies to cope with the low-light conditions exerted by the angiosperm canopy. Neochrome, an unconventional photoreceptor that allows ferns to “see the light” better, was likely part of the solution. Surprisingly, we discovered that fern neochrome was derived from a bryophyte lineage via horizontal gene transfer (HGT). This finding not only provides the first evidence that a plant-to-plant HGT can have a profound evolutionary impact but also has implications for the evolution of photosensory systems in plants. Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor—neochrome—that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.


Systematic Botany | 2008

A Molecular Phylogeny of Santalaceae (Santalales)

Joshua P. Der; Daniel L. Nickrent

Abstract Santalaceae sensu stricto, the type family for the sandalwood order (Santalales), include approximately 40 genera and over 550 species distributed worldwide. Because the family possesses plesiomorphic and generalized traits that occur throughout the order, this diverse assemblage of hemiparasitic plants has been difficult to characterize and differentiate from related families. We present phylogenetic analyses of all genera of Santalaceae, as well as Viscaceae and selected Opiliaceae, using DNA sequences from nuclear small-subunit ribosomal DNA as well as the chloroplast genes matK and rbcL. The concatenated data set, analyzed with parsimony, likelihood, and Bayesian inference, gave congruent results, with the majority of clades fully resolved. Our results reveal that the family is polyphyletic and that the genera of Santalaceae, as traditionally classified, occur in nine well-supported clades. The South American herbaceous perennial genera Arjona and Quinchamalium are sister to Schoepfia (Schoepfiaceae). The Australian genus Anthobolus emerges as a member of Opiliaceae. Viscaceae remain intact and are well supported as monophyletic. The remaining genera included in Santalaceae occur in six well supported clades, but the relationships among these clades are not fully resolved. These clades are, based on a component generic name, Comandra, Thesium, Cervantesia, Nanodea, Santalum and Amphorogyne. Morphological features diagnostic of these clades are discussed with the intention that these results will serve as the foundation for a revised classification.


Plant Molecular Biology | 2011

The evolution of chloroplast genes and genomes in ferns

Paul G. Wolf; Joshua P. Der; Aaron M. Duffy; Jacob B. Davidson; Amanda L. Grusz; Kathleen M. Pryer

Most of the publicly available data on chloroplast (plastid) genes and genomes come from seed plants, with relatively little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data. We review what we know about the evolutionary history of plastome structure across the fern phylogeny and we compare plastome organization and patterns of evolution in ferns to those in seed plants. A large clade of ferns is characterized by a plastome that has been reorganized with respect to the ancestral gene order (a similar order that is ancestral in seed plants). We review the sequence of inversions that gave rise to this organization. We also explore global nucleotide substitution patterns in ferns versus those found in seed plants across plastid genes, and we review the high levels of RNA editing observed in fern plastomes.


Science | 2013

Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella

Srikar Chamala; André S. Chanderbali; Joshua P. Der; Tianying Lan; Brandon Walts; Victor A. Albert; Claude W. dePamphilis; Jim Leebens-Mack; Steve Rounsley; Stephan C. Schuster; Rod A. Wing; Nianqing Xiao; Richard E. Moore; Pamela S. Soltis; Douglas E. Soltis; W. Brad Barbazuk

Shaping Plant Evolution Amborella trichopoda is understood to be the most basal extant flowering plant and its genome is anticipated to provide insights into the evolution of plant life on Earth (see the Perspective by Adams). To validate and assemble the sequence, Chamala et al. (p. 1516) combined fluorescent in situ hybridization (FISH), genomic mapping, and next-generation sequencing. The Amborella Genome Project (p. 10.1126/science.1241089) was able to infer that a whole-genome duplication event preceded the evolution of this ancestral angiosperm, and Rice et al. (p. 1468) found that numerous genes in the mitochondrion were acquired by horizontal gene transfer from other plants, including almost four entire mitochondrial genomes from mosses and algae. Fluorescence in situ hybridization allows for next-generation sequencing of a large, difficult genome. [Also see Perspective by Adams; Research Articles by Amborella Genome Project and Rice et al.] Genome sequencing with next-generation sequence (NGS) technologies can now be applied to organisms pivotal to addressing fundamental biological questions, but with genomes previously considered intractable or too expensive to undertake. However, for species with large and complex genomes, extensive genetic and physical map resources have, until now, been required to direct the sequencing effort and sequence assembly. As these resources are unavailable for most species, assembling high-quality genome sequences from NGS data remains challenging. We describe a strategy that uses NGS, fluorescence in situ hybridization, and whole-genome mapping to assemble a high-quality genome sequence for Amborella trichopoda, a nonmodel species crucial to understanding flowering plant evolution. These methods are applicable to many other organisms with limited genomic resources.


American Journal of Botany | 2009

Global chloroplast phylogeny and biogeography of bracken (Pteridium; Dennstaedtiaceae)

Joshua P. Der; John A. Thomson; Jeran K. Stratford; Paul G. Wolf

Bracken ferns (genus Pteridium) represent an ancient species complex with a natural worldwide distribution. Pteridium has historically been treated as comprising a single species, but recent treatments have recognized several related species. Phenotypic plasticity, geographically structured morphological variation, and geographically biased sampling have all contributed to taxonomic confusion in the genus. We sampled bracken specimens worldwide and used variable regions of the chloroplast genome to investigate phylogeography and reticulate evolution within the genus. Our results distinguish two major clades within Pteridium, a primarily northern hemisphere Laurasian/African clade, which includes all taxa currently assigned to P. aquilinum, and a primarily southern hemisphere Austral/South American clade, which includes P. esculentum and P. arachnoideum. All European accessions of P. aquilinum subsp. aquilinum appear in a monophyletic group and are nested within a clade containing the African P. aquilinum taxa (P. aquilinum subsp. capense and P. aquilinum subsp. centrali-africanum). Our results allow us to hypothesize the maternal progenitors of two allotetraploid bracken species, P. caudatum and P. semihastatum. We also discuss the biogeography of bracken in the context of the chloroplast phylogeny. Our study is one of the first to take a worldwide perspective in addressing variation in a broadly distributed species complex.


Genome Biology and Evolution | 2015

An Exploration into Fern Genome Space

Paul G. Wolf; Emily B. Sessa; Daniel Blaine Marchant; Fay-Wei Li; Carl J. Rothfels; Erin M. Sigel; Matthew A. Gitzendanner; Clayton J. Visger; Jo Ann Banks; Douglas E. Soltis; Pamela S. Soltis; Kathleen M. Pryer; Joshua P. Der

Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.

Collaboration


Dive into the Joshua P. Der's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude W. dePamphilis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Eric Wafula

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fay-Wei Li

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge