Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Cervantes-Durán is active.

Publication


Featured researches published by Claudia Cervantes-Durán.


Pharmacology, Biochemistry and Behavior | 2012

Role of peripheral and spinal 5-HT3 receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia

Mariana Bravo-Hernández; Claudia Cervantes-Durán; Jorge Baruch Pineda-Farias; Paulino Barragán-Iglesias; Pedro López-Sánchez; Vinicio Granados-Soto

The role of peripheral and spinal 5-HT(3) receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia in both paws. In experiments where the test drug was anticipated to augment or antagonize the response, 0.5 or 1% formalin, respectively, was used for injection. Peripheral ipsilateral, but not contralateral, pre-treatment (-10 min) with serotonin (5-HT, 10-100 nmol/paw) and the selective 5-HT(3) receptor agonist 1-(m-chlorophenyl)-biguanide (m-CPBG, 10-300 nmol/paw) increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. Moreover, spinal pre-treatment with m-CPBG (10-300 nmol/rat) increased 0.5% formalin-induced secondary hyperalgesia but not allodynia in both paws. Accordingly, peripheral ipsilateral (30-300 nmol/paw), but not contralateral (300 nmol/paw), and spinal (10-100 nmol) pre-treatment with the selective 5-HT(3) receptor antagonist ondansetron prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. The peripheral pronociceptive effects of 5-HT (100 nmol/paw) and m-CPBG (300 nmol/paw) as well as the spinal effect of m-CPBG (300 nmol/rat) were completely prevented by the peripheral (10 nmol/paw) and spinal (1 nmol/rat) injection, respectively, of ondansetron. At these doses, ondansetron did not modify per se formalin-induced nociceptive behaviors. Spinal (30-300 nmol/rat), but not peripheral (300 nmol/paw), post-treatment (on day 6) with ondansetron reversed established formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Results suggest that a barrage of afferent input induced by 5-HT at peripheral 5-HT(3) receptors participates in the development of formalin-induced long-term secondary allodynia and hyperalgesia in the rat. In addition, our data suggest that spinal 5-HT(3) receptors play an important role during development and maintenance of these evoked long-term behaviors.


Pharmacology, Biochemistry and Behavior | 2012

Role of peripheral and spinal 5-HT2B receptors in formalin-induced nociception

Claudia Cervantes-Durán; Guadalupe C. Vidal-Cantú; Paulino Barragán-Iglesias; Jorge Baruch Pineda-Farias; Mariana Bravo-Hernández; Janet Murbartián; Vinicio Granados-Soto

In this study we assessed the role of local peripheral and spinal serotonin 2B (5-HT(2B)) receptors in rats submitted to the formalin test. For this, local peripheral ipsilateral, but not contralateral, administration of the highly selective 5-HT(2B) receptor antagonist 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyridine (RS-127445, 0.01-1 nmol/paw) significantly prevented 1% formalin-induced flinching behavior. Moreover, local peripheral ipsilateral, but not contralateral, of the selective 5-HT(2) receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI, 1-10 nmol/paw) augmented 0.5% formalin-induced nociceptive behavior. The local pronociceptive effect of the 5-HT(2) receptor agonist DOI (10 nmol/paw) was significantly prevented by the local injection of RS-127445 (0.01 nmol/paw). Moreover, intrathecal injection of the selective 5-HT(2B) receptor antagonist RS-127445 (0.1-10 nmol/rat) also prevented 1% formalin-induced nociceptive behavior. In contrast, spinal injection of the 5-HT(2) receptor agonist DOI (1-10 nmol/rat) significantly increased flinching behavior induced by 0.5% formalin. The spinal pronociceptive effect of the 5-HT(2) receptor agonist DOI (10 nmol/rat) was prevented by the intrathecal injection of the 5-HT(2B) receptor antagonist RS-127445 (0.1 nmol/rat). Our results suggest that the 5-HT(2B) receptors play a pronociceptive role in peripheral as well as spinal sites in the rat formalin test. 5-HT(2B) receptors could be a target to develop analgesic drugs.


European Journal of Pharmacology | 2013

Mechanisms underlying the antinociceptive effect of mangiferin in the formalin test.

Teresa Izquierdo; Antonio Espinosa de los Monteros-Zuñiga; Claudia Cervantes-Durán; María Concepción Lozada; Beatriz Godínez-Chaparro

The purpose of this study was to investigate the possible antinociceptive effect of mangiferin, a glucosylxanthone present in Mangifera indica L., in inflammatory pain. Furthermore, we sought to investigate the possible mechanisms action that contributes to these effects. The ipsilateral local peripheral (1-30 µg/paw), intrathecal (1-30 µg/rat) and oral (1-30 mg/kg) administration of mangiferin produced a dose-dependent reduction in formalin-induced nociception. The antinociceptive effect of this drug was similar to that induced by diclofenac after oral and local peripheral administration. Furthermore, mangiferin was also able to reduce 0.1% capsaicin- and serotonin-induced nociceptive behavior. The local peripheral antinociceptive effect of mangiferin in the formalin test was blocked by naloxone (50 μg/paw), naltrindole (1 μg/paw), 5-guanidinonaltrindole (5-GNTI, 1 μg/paw), N(G)-L-nitro-arginine methyl ester (L-NAME, 100 µg/paw), 1H-(1,2,4)-oxadiazolo [4,2-a]quinoxalin-1-one (ODQ, 50 µg/paw) and glibenclamide (50 μg/paw), but not by methiothepin (30 μg/paw). These results suggest that the antinociceptive effects induced by mangiferin are mediated by the peripheral opioidergic system involving the activation of δ, κ, and probably µ, receptors, but not serotonergic receptors. Data also suggests that mangiferin activates the NO-cyclic GMP-ATP-sensitive K(+) channels pathway in order to produce its local peripheral antinociceptive effect in the formalin test. Mangiferin may prove to be effective in treating inflammatory pain in humans.


Neuroscience | 2013

Evidence for the participation of peripheral 5-HT2A, 5-HT2B, and 5-HT2C receptors in formalin-induced secondary mechanical allodynia and hyperalgesia

Claudia Cervantes-Durán; Jorge Baruch Pineda-Farias; Mariana Bravo-Hernández; Geovanna N. Quiñonez-Bastidas; Guadalupe C. Vidal-Cantú; Paulino Barragán-Iglesias; Vinicio Granados-Soto

The role of 5-HT₂A/₂B/₂C receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia. Pre-treatment for five consecutive days with compound 48/80 (1, 3, 10, 10, and 10 μg/paw) prevented formalin-induced secondary allodynia and hyperalgesia. Ipsilateral, but not contralateral, peripheral pre-treatment (nmol/paw) with the 5-HT₂ receptor agonist DOI (3-30), 5-HT (10-100) or fluoxetine (0.3-3) significantly increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. The pronociceptive effect of DOI (10 nmol/paw), 5-HT (100 nmol/paw) and fluoxetine (1 nmol/paw) was blocked by selective 5-HT₂A (ketanserin), 5-HT₂B (RS-127445), and 5-HT₂C (RS-102221) receptor antagonists. Furthermore, ipsilateral pre-treatment (nmol/paw) with ketanserin (1, 10, and 100), RS-127445 (0.01, 0.1 and 1) or RS-102221 (1, 10 and 100) prevented while post-treatment reversed 1% formalin-induced secondary allodynia and hyperalgesia in both paws. In marked contrast, contralateral injection of the greatest tested dose of 5-HT₂A/₂B/₂C receptor antagonists did not modify long-lasting secondary allodynia and hyperalgesia. These results suggest that 5-HT released from mast cells after formalin injection sensitizes primary afferent neurons via 5-HT₂A/₂B/₂C receptors leading to the development and maintenance of secondary allodynia and hyperalgesia.


European Journal of Pain | 2013

The l-kynurenine–probenecid combination reduces neuropathic pain in rats

Jorge Baruch Pineda-Farias; F. Pérez-Severiano; D.F. González-Esquivel; Paulino Barragán-Iglesias; Mariana Bravo-Hernández; Claudia Cervantes-Durán; P. Aguilera; C. Ríos; Vinicio Granados-Soto

l‐Kynurenine has antinociceptive effects in acute and inflammatory pain. This study determined the effect of l‐kynurenine and its metabolite (kynurenic acid) on rats subjected to neuropathic pain.


European Journal of Pharmacology | 2014

Evidence for the participation of peripheral α5 subunit-containing GABAA receptors in GABAA agonists-induced nociception in rats

Mariana Bravo-Hernández; Luis Alberto Feria-Morales; Jorge Elías Torres-López; Claudia Cervantes-Durán; Vinicio Granados-Soto; Héctor Isaac Rocha-González

The activation of GABAA receptor by γ-amino butyric acid (GABA) in primary afferent fibers produces depolarization. In normal conditions this depolarization causes a reduction in the release of neurotransmitters. Therefore, this depolarization remains inhibitory. However, previous studies have suggested that in inflammatory pain, GABA shifts its signaling from inhibition to excitation by an increased GABA-induced depolarization. The contribution of peripheral α5 subunit-containing GABAA receptors to the inflammatory pain is unknown. The purpose of this study was to investigate the possible pronociceptive role of peripheral α5 subunit-containing GABAA receptors in the formalin test. Formalin (0.5%) injection into the dorsum of the right hind paw produced flinching behavior in rats. Ipsilateral local peripheral pre-treatment (-10min) with exogenous GABA (0.003-0.03µg/paw) or common GABAA receptor agonists muscimol (0.003-0.03µg/paw), diazepam (0.017-0.056µg/paw) or phenobarbital (1-100µg/paw) significantly increased 0.5% formalin-induced nociceptive behavior. The pronociceptive effects of GABA (0.03µg/paw), muscimol (0.03µg/paw), diazepam (0.056µg/paw) and phenobarbital (100µg/paw) were prevented by either the GABAA receptor antagonist bicuculline (0.01-0.1µg/paw) or selective α5 subunit-containing GABAA receptor inverse agonist L-655,708 (0.017-0.17µg/paw). The α5 subunit-containing GABAA receptor protein was expressed in dorsal root ganglion (DRG) and dorsal spinal cord of naïve rats. The formalin injection did not modify α5 subunit-containing GABAA receptor expression. Overall, these results suggest that peripheral α5 subunit-containing GABAA receptors play a pronociceptive role in the rat formalin test.


Drug Development Research | 2015

5-HT2B Receptor Antagonists Reduce Nerve Injury-Induced Tactile Allodynia and Expression of 5-HT2B Receptors

Jorge Baruch Pineda-Farias; Isabel Velázquez-Lagunas; Paulino Barragán-Iglesias; Claudia Cervantes-Durán; Vinicio Granados-Soto

Preclinical Research


Life Sciences | 2013

Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats

Geovanna N. Quiñonez-Bastidas; Claudia Cervantes-Durán; Héctor Isaac Rocha-González; Janet Murbartián; Vinicio Granados-Soto

AIMS The purpose of this study was to investigate the antinociceptive effect of epicatechin as well as the possible mechanisms of action in diabetic rats. MAIN METHODS Rats were injected with streptozotocin to produce hyperglycemia. The formalin test was used to assess the nociceptive activity. KEY FINDINGS Acute pre-treatment with epicatechin (0.03-30 mg/kg, i.p.) prevented formalin-induced nociception in diabetic rats. Furthermore, daily or every other day treatment for 2 weeks with epicatechin (0.03-30 mg/kg, i.p.) also prevented formalin-induced nociception in diabetic rats. Acute epicatechin-induced antinociception was prevented by l-NAME (N(ω)-nitro-l-arginine methyl ester hydrochloride, 1-10mg/kg, non-selective nitric oxide synthesis inhibitor), 7-nitroindazole (0.1-1mg/kg, selective neuronal nitric oxide synthesis inhibitor), ODQ (1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one, 0.2-2mg/kg, guanylyl cyclase inhibitor) or glibenclamide (1-10mg/kg, ATP-sensitive K(+) channel blocker). Moreover, epicatechin (3mg/kg)-induced antinociception was fully prevented by methiothepin (0.1-1mg/kg, serotonergic receptor antagonist), WAY-100635 (0.03-0.3mg/kg, selective 5-HT1A receptor antagonist) or SB-224289 (0.03-0.3mg/kg, selective 5-HT1B receptor antagonist). In contrast, BRL-15572 (0.03-0.3mg/kg, selective 5-HT1D receptor antagonist) only slightly prevented the antinociceptive effect of epicatechin. Naloxone (0.1-1mg/kg, opioid antagonist) did not modify epicatechins effect. SIGNIFICANCE Data suggest the involvement of the nitric oxide-cyclic GMP-K(+) channel pathway as well as activation of 5-HT1A and 5HT1B, and at a lesser extent, 5-HT1D, but not opioid, receptors in the antinociceptive effect of epicatechin in diabetic rats. Our data suggest that acute or chronic treatment with epicatechin may prove to be effective to treat nociceptive hypersensitivity in diabetic patients.


Brain Research | 2016

Predominant role of spinal P2Y1 receptors in the development of neuropathic pain in rats

Paulino Barragán-Iglesias; Jorge Baruch Pineda-Farias; Mariana Bravo-Hernández; Claudia Cervantes-Durán; Theodore J. Price; Janet Murbartián; Vinicio Granados-Soto

The role of P2X2/3, P2X3, P2X4 or P2X7 and P2Y2, P2Y6, and P2Y12 receptors in neuropathic pain has been widely studied. In contrast, the role of P2Y1 receptors is scarcely studied. In this study we assessed the role of P2Y1 receptors in several neuropathic pain models in the rat. Furthermore, we analyzed the expression of P2Y1 receptors in the ipsilateral dorsal root ganglia (DRG) and dorsal part of the spinal cord during the development and maintenance of neuropathic pain. We also determined the effect of the P2Y1 receptor antagonist on the expression of P2Y1 receptors. Chronic constriction injury (CCI), spared nerve injury (SNI) or spinal nerve ligation (SNL) produced tactile allodynia from 1 to 14 days after nerve injury. CCI, SNI and SNL enhanced expression of P2Y1 receptors in DRG but not in the dorsal part of the spinal cord at 1-3 days after injury. Intrathecal injection of the selective P2Y1 receptor antagonist MRS2500, but not vehicle, reduced tactile allodynia in rats 1-3 days after CCI, SNI, or SNL. Moreover, intrathecal injection of MRS2500 (at day 1 or 3) reduced neuropathy-induced up-regulation of P2Y1 receptors expression. Intrathecal injection of MRS2500 lost most of the antiallodynic effect when injected 14 days after injury. At this time, MRS2500 did not modify nerve-injury-induced P2Y1 receptors up-regulation. Our results suggest that P2Y1 receptors are localized in DRG, are up-regulated by nerve injury and play a pronociceptive role in development and, to a lesser extent, maintenance of neuropathic pain.


Molecular Pain | 2014

Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells

Paulino Barragán-Iglesias; Jorge Baruch Pineda-Farias; Claudia Cervantes-Durán; Mariana Bravo-Hernández; Héctor Isaac Rocha-González; Janet Murbartián; Vinicio Granados-Soto

Collaboration


Dive into the Claudia Cervantes-Durán's collaboration.

Researchain Logo
Decentralizing Knowledge