Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge Baruch Pineda-Farias is active.

Publication


Featured researches published by Jorge Baruch Pineda-Farias.


Pharmacology, Biochemistry and Behavior | 2012

Role of peripheral and spinal 5-HT3 receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia

Mariana Bravo-Hernández; Claudia Cervantes-Durán; Jorge Baruch Pineda-Farias; Paulino Barragán-Iglesias; Pedro López-Sánchez; Vinicio Granados-Soto

The role of peripheral and spinal 5-HT(3) receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia in both paws. In experiments where the test drug was anticipated to augment or antagonize the response, 0.5 or 1% formalin, respectively, was used for injection. Peripheral ipsilateral, but not contralateral, pre-treatment (-10 min) with serotonin (5-HT, 10-100 nmol/paw) and the selective 5-HT(3) receptor agonist 1-(m-chlorophenyl)-biguanide (m-CPBG, 10-300 nmol/paw) increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. Moreover, spinal pre-treatment with m-CPBG (10-300 nmol/rat) increased 0.5% formalin-induced secondary hyperalgesia but not allodynia in both paws. Accordingly, peripheral ipsilateral (30-300 nmol/paw), but not contralateral (300 nmol/paw), and spinal (10-100 nmol) pre-treatment with the selective 5-HT(3) receptor antagonist ondansetron prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. The peripheral pronociceptive effects of 5-HT (100 nmol/paw) and m-CPBG (300 nmol/paw) as well as the spinal effect of m-CPBG (300 nmol/rat) were completely prevented by the peripheral (10 nmol/paw) and spinal (1 nmol/rat) injection, respectively, of ondansetron. At these doses, ondansetron did not modify per se formalin-induced nociceptive behaviors. Spinal (30-300 nmol/rat), but not peripheral (300 nmol/paw), post-treatment (on day 6) with ondansetron reversed established formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Results suggest that a barrage of afferent input induced by 5-HT at peripheral 5-HT(3) receptors participates in the development of formalin-induced long-term secondary allodynia and hyperalgesia in the rat. In addition, our data suggest that spinal 5-HT(3) receptors play an important role during development and maintenance of these evoked long-term behaviors.


Pharmacology, Biochemistry and Behavior | 2011

Blockade of 5-HT7 receptors reduces tactile allodynia in the rat.

Evelyn Amaya-Castellanos; Jorge Baruch Pineda-Farias; Gabriela Castañeda-Corral; Guadalupe C. Vidal-Cantú; Janet Murbartián; Héctor Isaac Rocha-González; Vinicio Granados-Soto

This study assessed the role of systemic and spinal 5-HT(7) receptors on rats submitted to spinal nerve injury. In addition, the 5-HT(7) receptors level in dorsal root ganglion and spinal cord was also determined. Tactile allodynia was induced by L5/L6 spinal nerve ligation. Systemic (0.01-10mg/kg) or spinal (0.3-30 μg) administration of the selective 5-HT(7) receptor antagonist SB-269970 but not vehicle reduced in a dose-dependent manner established tactile allodynia. This effect was maintained for about 6h. SB-269970 was more potent and effective by the spinal administration route than through systemic injection. Spinal nerve ligation reduced expression of 5-HT(7) receptors in the ipsilateral but not contralateral dorsal root ganglia. Moreover, 5-HT(7) receptor levels were lower in the ipsilateral dorsal spinal cord of neuropathic rats compared to naïve and sham rats. No changes in the receptor levels were observed in the contralateral dorsal spinal cord and in both regions of the ventral spinal cord. Data suggest that spinal 5-HT(7) receptors play a pronociceptive role in neuropathic rats. Results also indicate that spinal nerve injury leads to a reduced 5-HT(7) receptors level in pain processing-related areas which may result from its nociceptive role in this model. Data suggest that selective 5-HT(7) receptor antagonists may function as analgesics in nerve injury pain states.


Pharmacology, Biochemistry and Behavior | 2012

Role of peripheral and spinal 5-HT2B receptors in formalin-induced nociception

Claudia Cervantes-Durán; Guadalupe C. Vidal-Cantú; Paulino Barragán-Iglesias; Jorge Baruch Pineda-Farias; Mariana Bravo-Hernández; Janet Murbartián; Vinicio Granados-Soto

In this study we assessed the role of local peripheral and spinal serotonin 2B (5-HT(2B)) receptors in rats submitted to the formalin test. For this, local peripheral ipsilateral, but not contralateral, administration of the highly selective 5-HT(2B) receptor antagonist 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyridine (RS-127445, 0.01-1 nmol/paw) significantly prevented 1% formalin-induced flinching behavior. Moreover, local peripheral ipsilateral, but not contralateral, of the selective 5-HT(2) receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI, 1-10 nmol/paw) augmented 0.5% formalin-induced nociceptive behavior. The local pronociceptive effect of the 5-HT(2) receptor agonist DOI (10 nmol/paw) was significantly prevented by the local injection of RS-127445 (0.01 nmol/paw). Moreover, intrathecal injection of the selective 5-HT(2B) receptor antagonist RS-127445 (0.1-10 nmol/rat) also prevented 1% formalin-induced nociceptive behavior. In contrast, spinal injection of the 5-HT(2) receptor agonist DOI (1-10 nmol/rat) significantly increased flinching behavior induced by 0.5% formalin. The spinal pronociceptive effect of the 5-HT(2) receptor agonist DOI (10 nmol/rat) was prevented by the intrathecal injection of the 5-HT(2B) receptor antagonist RS-127445 (0.1 nmol/rat). Our results suggest that the 5-HT(2B) receptors play a pronociceptive role in peripheral as well as spinal sites in the rat formalin test. 5-HT(2B) receptors could be a target to develop analgesic drugs.


Pharmacology, Biochemistry and Behavior | 2015

Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats.

Paulino Barragán-Iglesias; Luis Mendoza-Garcés; Jorge Baruch Pineda-Farias; Verónica Solano-Olivares; Juan Rodríguez-Silverio; Francisco J. Flores-Murrieta; Vinicio Granados-Soto; Héctor Isaac Rocha-González

Metabotropic P2Y receptors subfamily consists of eight functional mammalian receptors. Specifically, P2Y1, P2Y6 and P2Y11 receptors have been described in the sensory nervous system, but their participation, at peripheral level, in behavioral pain models is scarcely understood. This study assessed the role of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain. Ipsilateral, but not contralateral peripheral pre-treatment with the endogenous P2Y1 (ADP, 100-1000nmol/paw), P2Y6 (UDP, 180-300nmol/paw) and P2Y11 (ATP, 100-1000nmol/paw), or selective P2Y1 (MRS2365, 0.1-10nmol/paw), P2Y6 (PSB0474, 0.1-0.10pmol/paw) and P2Y11 (NF546, 0.3-3nmol/paw) receptor agonists increased 0.5% formalin-induced flinching behavior. Concordantly, peripheral pre-treatment with the selective P2Y1 (MRS2500, 0.01-10pmol/paw), P2Y6 (MRS2578, 3-30nmol/paw) and P2Y11 (NF340, 1-10nmol/paw) receptor antagonists significantly decreased 1% formalin-induced flinching behavior. Furthermore, the pronociceptive effect of ADP (100nmol/paw) or MRS2365 (10nmol/paw), UDP (300nmol/paw) or PSB0474 (10pmol/paw) and ATP (1000nmol/paw) or NF546 (3nmol/paw) was blocked by the selective P2Y1 (MRS2500, 0.01nmol/paw), P2Y6 (MRS2578, 3nmol/paw), and P2Y11 (NF340, 1nmol/paw) receptor antagonists, respectively. Western blot analysis confirmed the presence of P2Y1 (66kDa), P2Y6 (36kDa) and P2Y11 (75kDa) receptors in dorsal root ganglia (DRG) and sciatic nerve. Results suggest that peripheral activation of P2Y1, P2Y6 and P2Y11 receptors plays a pronociceptive role in formalin-induced pain.


Brain Research | 2015

Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats

Sabino Hazael Avila-Rojas; Isabel Velazquez-Lagunas; Ana Belen Salinas-Abarca; Paulino Barragán-Iglesias; Jorge Baruch Pineda-Farias; Vinicio Granados-Soto

Serotonin (5-HT) participates in pain modulation by interacting with different 5-HT receptors. The role of 5-HT5A receptor in neuropathic pain has not previously studied. The purpose of this study was to investigate: A) the role of 5-HT5A receptors in rats subjected to spinal nerve injury; B) the expression of 5-HT5A receptors in dorsal spinal cord and dorsal root ganglia (DRG). Neuropathic pain was induced by L5/L6 spinal nerve ligation. Tactile allodynia in neuropathic rats was assessed with von Frey filaments. Western blot methodology was used to determine 5-HT5A receptor protein expression. Intrathecal administration (on day 14th) of 5-HT (10-100 nmol) or 5-carboxamidotryptamine (5-CT, 0.03-0.3 nmol) reversed nerve injury-induced tactile allodynia. Intrathecal non-selective (methiothepin, 0.1-0.8 nmol) and selective (SB-699551, 1-10 nmol) 5-HT5A receptor antagonists reduced, by ~60% and ~25%, respectively, the antiallodynic effect of 5-HT (100 nmol) or 5-CT (0.3 nmol). Moreover, both selective 5-HT1A and 5-HT1B/1D receptor antagonists, WAY-100635 (0.3-1 nmol) and GR-127935 (0.3-1 nmol), respectively, partially diminished the antiallodynic effect of 5-HT or 5-CT by about 30%. Injection of antagonists, by themselves, did not affect allodynia. 5-HT5A receptors were expressed in the ipsilateral dorsal lumbar spinal cord and DRG and L5/L6 spinal nerve ligation did not modify 5-HT5A receptor protein expression in those sites. Results suggest that 5-HT5A receptors reduce pain processing in the spinal cord and that 5-HT and 5-CT reduce neuropathic pain through activation of 5-HT5A and 5-HT1A/1B/1D receptors. These receptors could be an important part of the descending pain inhibitory system.


Molecular Pain | 2015

Role of anoctamin-1 and bestrophin-1 in spinal nerve ligation-induced neuropathic pain in rats

Jorge Baruch Pineda-Farias; Paulino Barragán-Iglesias; Emanuel Loeza-Alcocer; Jorge Elías Torres-López; Héctor Isaac Rocha-González; Francisca Pérez-Severiano; Vinicio Granados-Soto

BackgroundCalcium-activated chloride channels (CaCCs) activation induces membrane depolarization by increasing chloride efflux in primary sensory neurons that can facilitate action potential generation. Previous studies suggest that CaCCs family members bestrophin-1 and anoctamin-1 are involved in inflammatory pain. However, their role in neuropathic pain is unclear. In this investigation we assessed the involvement of these CaCCs family members in rats subjected to the L5/L6 spinal nerve ligation. In addition, anoctamin-1 and bestrophin-1 mRNA and protein expression in dorsal root ganglion (DRG) and spinal cord was also determined in the presence and absence of selective inhibitors.ResultsL5/L6 spinal nerve ligation induced mechanical tactile allodynia. Intrathecal administration of non-selective CaCCs inhibitors (NPPB, 9-AC and NFA) dose-dependently reduced tactile allodynia. Intrathecal administration of selective CaCCs inhibitors (T16Ainh-A01 and CaCCinh-A01) also dose-dependently diminished tactile allodynia and thermal hyperalgesia. Anoctamin-1 and bestrophin-1 mRNA and protein were expressed in the dorsal spinal cord and DRG of naïve, sham and neuropathic rats. L5/L6 spinal nerve ligation rose mRNA and protein expression of anoctamin-1, but not bestrophin-1, in the dorsal spinal cord and DRG from day 1 to day 14 after nerve ligation. In addition, repeated administration of CaCCs inhibitors (T16Ainh-A01, CaCCinh-A01 or NFA) or anti-anoctamin-1 antibody prevented spinal nerve ligation-induced rises in anoctamin-1 mRNA and protein expression. Following spinal nerve ligation, the compound action potential generation of putative C fibers increased while selective CaCCs inhibitors (T16Ainh-A01 and CaCCinh-A01) attenuated such increase.ConclusionsThere is functional anoctamin-1 and bestrophin-1 expression in rats at sites related to nociceptive processing. Blockade of these CaCCs suppresses compound action potential generation in putative C fibers and lessens established tactile allodynia. As CaCCs activity contributes to neuropathic pain maintenance, selective inhibition of their activity may function as a tool to generate analgesia in nerve injury pain states.


Neuroscience | 2013

Evidence for the participation of peripheral 5-HT2A, 5-HT2B, and 5-HT2C receptors in formalin-induced secondary mechanical allodynia and hyperalgesia

Claudia Cervantes-Durán; Jorge Baruch Pineda-Farias; Mariana Bravo-Hernández; Geovanna N. Quiñonez-Bastidas; Guadalupe C. Vidal-Cantú; Paulino Barragán-Iglesias; Vinicio Granados-Soto

The role of 5-HT₂A/₂B/₂C receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia. Pre-treatment for five consecutive days with compound 48/80 (1, 3, 10, 10, and 10 μg/paw) prevented formalin-induced secondary allodynia and hyperalgesia. Ipsilateral, but not contralateral, peripheral pre-treatment (nmol/paw) with the 5-HT₂ receptor agonist DOI (3-30), 5-HT (10-100) or fluoxetine (0.3-3) significantly increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. The pronociceptive effect of DOI (10 nmol/paw), 5-HT (100 nmol/paw) and fluoxetine (1 nmol/paw) was blocked by selective 5-HT₂A (ketanserin), 5-HT₂B (RS-127445), and 5-HT₂C (RS-102221) receptor antagonists. Furthermore, ipsilateral pre-treatment (nmol/paw) with ketanserin (1, 10, and 100), RS-127445 (0.01, 0.1 and 1) or RS-102221 (1, 10 and 100) prevented while post-treatment reversed 1% formalin-induced secondary allodynia and hyperalgesia in both paws. In marked contrast, contralateral injection of the greatest tested dose of 5-HT₂A/₂B/₂C receptor antagonists did not modify long-lasting secondary allodynia and hyperalgesia. These results suggest that 5-HT released from mast cells after formalin injection sensitizes primary afferent neurons via 5-HT₂A/₂B/₂C receptors leading to the development and maintenance of secondary allodynia and hyperalgesia.


European Journal of Pain | 2013

The l-kynurenine–probenecid combination reduces neuropathic pain in rats

Jorge Baruch Pineda-Farias; F. Pérez-Severiano; D.F. González-Esquivel; Paulino Barragán-Iglesias; Mariana Bravo-Hernández; Claudia Cervantes-Durán; P. Aguilera; C. Ríos; Vinicio Granados-Soto

l‐Kynurenine has antinociceptive effects in acute and inflammatory pain. This study determined the effect of l‐kynurenine and its metabolite (kynurenic acid) on rats subjected to neuropathic pain.


Bioorganic & Medicinal Chemistry | 2014

Anti-allodynic effect of 2-(aminomethyl)adamantane-1-carboxylic acid in a rat model of neuropathic pain: a mechanism dependent on CaV2.2 channel inhibition.

Grigoris Zoidis; Alejandro Sandoval; Jorge Baruch Pineda-Farias; Vinicio Granados-Soto; Ricardo Felix

Neuropathic pain is a serious physical disabling condition resulting from lesion or dysfunction of the peripheral sensory nervous system. Despite the fact that the mechanisms underlying neuropathic pain are poorly understood, the involvement of voltage-gated calcium (Ca(V)) channels in its pathophysiology has justified the use of drugs that bind the Ca(V) channel α₂δ auxiliary subunit, such as gabapentin (GBP), to attain analgesic and anti-allodynic effects in models involving neuronal sensitization and nerve injury. GBP binding to α₂δ inhibits nerve injury-induced trafficking of the α₁ pore forming subunits of Ca(V) channels, particularly of the N-type, from the cytoplasm to the plasma membrane of pre-synaptic terminals in dorsal root ganglion neurons and dorsal horn spinal neurons. In the search for alternative forms of treatment, in this study we describe the synthesis and pharmacological profile of a GABA derivative, 2-aminoadamantane-1-carboxylic acid (GZ4), which displays a close structure-activity relationship with GBP. Behavioral assessment using von Frey filament stimuli showed that GZ4 treatment reverted mechanical allodynia/hyperalgesia in an animal model of spinal nerve ligation-induced neuropathic pain. In addition, using the patch clamp technique we show that GZ4 treatment significantly decreased whole-cell currents through N-type Ca(V) channels heterologously expressed in HEK-293 cells. Interestingly, the behavioral and electrophysiological time course of GZ4 actions reflects that its mechanism of action is similar but not identical to that of GBP. While GBP actions require at least 24 h and imply uptake of the drug, which suggests that the drug acts mainly intracellularly affecting channels trafficking to the plasma membrane, the faster time course (1-3 h) of GZ4 effects suggests also a direct inhibition of Ca(2+) currents acting on cell surface channels.


European Journal of Pharmacology | 2017

Formalin injection produces long-lasting hypersensitivity with characteristics of neuropathic pain

Ana Belen Salinas-Abarca; Sabino Hazael Avila-Rojas; Paulino Barragán-Iglesias; Jorge Baruch Pineda-Farias; Vinicio Granados-Soto

Abstract The purpose of this study was to investigate whether 1%, 2% or 5% formalin injection produce hypersensitivity with characteristics of the neuropathic pain induced by spinal nerve injury. Formalin injection (1%, 2% and 5%) produced concentration‐dependent long‐lasting (at least 14 days) mechanical allodynia and hyperalgesia in both paws. Likewise, L5/L6 spinal nerve ligation induced allodynia and hyperalgesia in both paws. The intensity of hypersensitivity was greater in the ipsilateral than in the contralateral paw in all models. Systemic gabapentin or morphine completely reduced 1% formalin‐induced hypersensitivity. In contrast, both drugs were not able to fully diminish 2–5% formalin‐ and nerve injury‐induced hypersensitivity. Indomethacin produced a significant effect in the chronic 1% formalin test. Conversely, this drug did not modify 2 or 5% formalin‐ and nerve injury‐induced hypersensitivity. Spinal nerve injury and 2–5%, but not 1%, formalin injection enhanced ATF3 protein expression and immunofluorescence in dorsal root ganglia (DRG) in a time‐dependent manner. Furthermore, 2–5%, but not 1%, formalin injection or spinal nerve injury also enhanced &agr;2&dgr;−1 subunit protein levels in DRG. Our results suggest that 5% and, at lesser extent, 2% formalin injection produces long‐lasting hypersensitivity with a pharmacological and molecular pattern that resembles neuropathic pain induced by spinal nerve ligation.

Collaboration


Dive into the Jorge Baruch Pineda-Farias's collaboration.

Researchain Logo
Decentralizing Knowledge