Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Cordova is active.

Publication


Featured researches published by Claudia Cordova.


British Journal of Pharmacology | 2012

Natural triterpenes modulate immune-inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis

Rubén Martín; Marita Hernández; Claudia Cordova; María Luisa Nieto

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases that develop as a result of deregulated immune responses causing glial activation and destruction of CNS tissues. Oleanolic acid and erythrodiol are natural triterpenes that display strong anti‐inflammatory and immunomodulatory activities. Oleanolic acid beneficially influences the course of established EAE. We now extend our previous observations to erythrodiol and address the efficacy of both compounds to protect against EAE, given under different regimens.


Journal of Molecular and Cellular Cardiology | 2014

Oleanolic acid modulates the immune-inflammatory response in mice with experimental autoimmune myocarditis and protects from cardiac injury. Therapeutic implications for the human disease

Russell Martin; Claudia Cordova; J.A. San Román; Beatriz Gutiérrez; Victoria Cachofeiro; María Luisa Nieto

Myocarditis and dilated cardiomyopathy (DCM) are inflammatory diseases of the myocardium, for which appropriate treatment remains a major clinical challenge. Oleanolic acid (OA), a natural triterpene widely distributed in food and medicinal plants, possesses a large range of biological effects with beneficial properties for health and disease prevention. Several experimental approaches have shown its cardioprotective actions, and OA has recently been proven effective for treating Th1 cell-mediated inflammatory diseases; however, its effect on inflammatory heart disorders, including myocarditis, has not yet been addressed. Therefore, the present study was undertaken to determine the effectiveness of OA in prevention and treatment of experimental autoimmune myocarditis (EAM). The utility of OA was evaluated in vivo through their administration to cardiac α-myosin (MyHc-α614-629)-immunized BALB/c mice from day 0 or day 21 post-immunization to the end of the experiment, and in vitro through their addition to stimulated-cardiac cells. Prophylactic and therapeutic administration of OA dramatically decreased disease severity: the heart weight/body weight ratio as well as plasma levels of brain natriuretic peptide and myosin-specific autoantibodies production were significantly reduced in OA-treated EAM animals, compared with untreated ones. Histological heart analysis showed that OA-treatment diminished cell infiltration, fibrosis and dystrophic calcifications. OA also decreased proliferation of cardiac fibroblast in vitro and attenuated calcium and collagen deposition induced by relevant cytokines of active myocarditis. Furthermore, in OA-treated EAM mice the number of Treg cells and the production of IL-10 and IL-35 were markedly increased, while proinflammatory and profibrotic cytokines were significantly reduced. We demonstrate that OA ameliorates both developing and established EAM by promoting an antiinflammatory cytokine profile and by interfering with the generation of cardiac-specific autoantibodies, as well as through direct protective effects on cardiac cells. Therefore, we envision this natural product as novel helpful tool for intervention in inflammatory cardiomyopathies including myocarditis.


PLOS ONE | 2012

DIOL Triterpenes Block Profibrotic Effects of Angiotensin II and Protect from Cardiac Hypertrophy

Rubén Martín; María Miana; Raquel Jurado-López; Ernesto Martínez-Martínez; Nieves Gomez-Hurtado; Carmen Delgado; Maria Visitación Bartolomé; José Alberto San Román; Claudia Cordova; Vicente Lahera; María Luisa Nieto; Victoria Cachofeiro

Background The natural triterpenes, erythrodiol and uvaol, exert anti-inflammatory, vasorelaxing and anti-proliferative effects. Angiotensin II is a well-known profibrotic and proliferative agent that participates in the cardiac remodeling associated with different pathological situations through the stimulation and proliferation of cardiac fibroblasts. Therefore, the aim of the study was to investigate the preventive effects of the natural triterpenes erythrodiol and uvaol on the proliferation and collagen production induced by angiotensin II in cardiac myofibroblasts. Their actions on cardiac hypertrophy triggered by angiotensin II were also studied. Methodology/Principal Findings The effect of erythrodiol and uvaol on angiotensin II-induced proliferation was evaluated in cardiac myofibroblasts from adult rats in the presence or the absence of the inhibitors of PPAR-γ, GW9662 or JNK, SP600125. The effect on collagen levels induced by angiotensin II was evaluated in cardiac myofibroblasts and mouse heart. The presence of low doses of both triterpenes reduced the proliferation of cardiac myofibroblasts induced by angiotensin II. Pretreatment with GW9662 reversed the effect elicited by both triterpenes while SP600125 did not modify it. Both triterpenes at high doses produced an increase in annexing-V binding in the presence or absence of angiotensin II, which was reduced by either SP600125 or GW9662. Erythrodiol and uvaol decreased collagen I and galectin 3 levels induced by angiotensin II in cardiac myofribroblasts. Finally, cardiac hypertrophy, ventricular remodeling, fibrosis, and increases in myocyte area and brain natriuretic peptide levels observed in angiotensin II-infused mice were reduced in triterpene-treated animals. Conclusions/Significance Erythrodiol and uvaol reduce cardiac hypertrophy and left ventricle remodeling induced by angiotensin II in mice by diminishing fibrosis and myocyte area. They also modulate growth and survival of cardiac myofibroblasts. They inhibit the angiotensin II-induced proliferation in a PPAR-γ-dependent manner, while at high doses they activate pathways of programmed cell death that are dependent on JNK and PPAR-γ.


PLOS ONE | 2014

Oleanolic Acid Controls Allergic and Inflammatory Responses in Experimental Allergic Conjunctivitis

Claudia Cordova; Beatriz Gutiérrez; Carmen Martinez-Garcia; Rubén Martín; Patricia Gallego-Muñoz; Marita Hernández; María Luisa Nieto

Pollen is the most common aeroallergen to cause seasonal conjunctivitis. The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration. Oleanolic acid (OA) is natural a triterpene that displays strong anti-inflammatory and immunomodulatory properties being an active anti-allergic molecule on hypersensitivity reaction models. However, its effect on inflammatory ocular disorders including conjunctivits, has not yet been addressed. Hence, using a Ragweed pollen (RWP)-specific allergic conjunctivitis (EAC) mouse model we study here whether OA could modify responses associated to allergic processes. We found that OA treatment restricted mast cell degranulation and infiltration of eosinophils in conjunctival tissue and decreased allergen-specific Igs levels in EAC mice. Th2-type cytokines, secreted phospholipase A2 type-IIA (sPLA2-IIA), and chemokines levels were also significantly diminished in the conjunctiva and serum of OA-treated EAC mice. Moreover, OA treatment also suppressed RWP-specific T-cell proliferation. In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin. Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.


Journal of Neuroinflammation | 2012

Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding

Rubén Martín; Claudia Cordova; María Luisa Nieto

BackgroundActivation of microglia, the primary component of the innate immune response in the brain, is a hallmark of neuroinflammation in neurodegenerative disorders, including Alzheimer’s disease (AD) and other pathological conditions such as stroke or CNS infection. In response to a variety of insults, microglial cells produce high levels of inflammatory cytokines that are often involved in neuronal injury, and play an important role in the recognition, engulfment, and clearance of apoptotic cells and/or invading microbes. Secreted phospholipase A2-IIA (sPLA2-IIA), an enzyme that interacts with cells involved in the systemic immune/inflammatory response, has been found up-regulated in the cerebrospinal fluid and brain of AD patients. However, despite several approaches, its functions in mediating CNS inflammation remain unknown. In the present study, the role of sPLA2-IIA was examined by investigating its direct effects on microglial cells.MethodsPrimary and immortalized microglial cells were stimulated by sPLA2-IIA in order to characterize the cytokine-like actions of the phospholipase. The hallmarks of activated microglia analyzed include: mitogenic response, phagocytic capabilities and induction of inflammatory mediators. In addition, we studied several of the potential molecular mechanisms involved in those events.ResultsThe direct exposure of microglial cells to sPLA2-IIA stimulated, in a time- and dose-dependent manner, their phagocytic and proliferative capabilities. sPLA2-IIA also triggered the synthesis of the inflammatory proteins COX-2 and TNFα. In addition, EGFR phosphorylation and shedding of the membrane-anchored heparin-binding EGF-like growth factor (pro-HB-EGF) ectodomain, as well as a rapid activation/phosphorylation of the classical survival proteins ERK, P70S6K and rS6 were induced upon sPLA2-IIA treatment. We further demonstrated that the presence of an EGFR inhibitor (AG1478), a matrix metalloproteinase inhibitor (GM6001), an ADAM inhibitor (TAPI-1), and a HB-EGF neutralizing antibody abrogated the phenotype of activated microglia induced by the sPLA2-IIA.ConclusionThese results support the hypothesis that sPLA2-IIA may act as a potent modulator of microglial functions through its ability to induce EGFR transactivation and HB-EGF release. Accordingly, pharmacological modulation of EGFR might be a useful tool for treating neuroinflammatory diseases characterized by sPLA2-IIA accumulation.


PLOS ONE | 2017

A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells

Rubén Martín; Claudia Cordova; Beatriz Gutiérrez; Marita Hernández; María Luisa Nieto

Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA). Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications.


European Journal of Neurology | 2017

Netrin-1 and multiple sclerosis: a new biomarker for neuroinflammation?

P. Mulero; Claudia Cordova; Marita Hernández; Rubén Martín; Beatriz Gutiérrez; J. C. Muñoz; N. Redondo; Isabel Gallardo; N. Téllez; María Luisa Nieto

Netrin‐1, an axon guidance protein, reduces serum levels of pro‐inflammatory mediators and stabilizes the blood−brain barrier limiting the entrance of immune cells into the central nervous system. The aim was to investigate its presence in the experimental autoimmune encephalomyelitis (EAE) model and in multiple sclerosis (MS) patients with and without clinical activity.


Archive | 2012

Beneficial actions of the natural triterpene oleanolic acid in an experimental model of myocarditis: a potential therapeutic role

Rubén Martín; Marita Hernández; Claudia Cordova; Juan Muñoz; José Alberto San Román; Victoria Cachofeiro; María Luisa Nieto


Archive | 2015

Netrin-1: a new player in multiple sclerosis pathogenesis?

Patricia Mulero; Claudia Cordova; Beatriz Gutiérrez; Rubén Martín; Marita Hernández; Juan Muñoz; María Luisa Nieto; N. Téllez


Archive | 2015

Oleanolic acid protects against optic nerve degeneration and retinal ganglion cells loss in an experimental model of multiple sclerosis

Claudia Cordova; Beatriz Gutiérrez; Rubén Martín; Marita Hernández; N. Téllez; María Luisa Nieto

Collaboration


Dive into the Claudia Cordova's collaboration.

Top Co-Authors

Avatar

Marita Hernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Gutiérrez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rubén Martín

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rubén Martín

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Victoria Cachofeiro

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

José Alberto San Román

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Delgado

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge