Claudia Erpelinck-Verschueren
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Erpelinck-Verschueren.
Cancer Cell | 2010
Maria E. Figueroa; Sanne Lugthart; Yushan Li; Claudia Erpelinck-Verschueren; Xutao Deng; Paul J. Christos; Elizabeth D. Schifano; James G. Booth; Wim L.J. van Putten; Lucy Skrabanek; Fabien Campagne; Madhu Mazumdar; John M. Greally; Peter J. M. Valk; Bob Löwenberg; Ruud Delwel; Ari Melnick
We hypothesized that DNA methylation distributes into specific patterns in cancer cells, which reflect critical biological differences. We therefore examined the methylation profiles of 344 patients with acute myeloid leukemia (AML). Clustering of these patients by methylation data segregated patients into 16 groups. Five of these groups defined new AML subtypes that shared no other known feature. In addition, DNA methylation profiles segregated patients with CEBPA aberrations from other subtypes of leukemia, defined four epigenetically distinct forms of AML with NPM1 mutations, and showed that established AML1-ETO, CBFb-MYH11, and PML-RARA leukemia entities are associated with specific methylation profiles. We report a 15 gene methylation classifier predictive of overall survival in an independent patient cohort (p < 0.001, adjusted for known covariates).
Blood | 2009
Bas J. Wouters; Bob Löwenberg; Claudia Erpelinck-Verschueren; Wim L.J. van Putten; Ruud Delwel
Mutations in CCAAT/enhancer binding protein alpha (CEBPA) are seen in 5% to 14% of acute myeloid leukemia (AML) and have been associated with a favorable clinical outcome. Most AMLs with CEBPA mutations simultaneously carry 2 mutations (CEBPA(double-mut)), usually biallelic, whereas single heterozygous mutations (CEBPA(single-mut)) are less frequently seen. Using denaturing high-performance liquid chromatography and nucleotide sequencing, we identified among a cohort of 598 newly diagnosed AMLs a subset of 41 CEBPA mutant cases (28 CEBPA(double-mut) and 13 CEBPA(single-mut) cases). CEBPA(double-mut) associated with a unique gene expression profile as well as favorable overall and event-free survival, retained in multivariable analysis that included cytogenetic risk, FLT3-ITD and NPM1 mutation, white blood cell count, and age. In contrast, CEBPA(single-mut) AMLs did not express a discriminating signature and could not be distinguished from wild-type cases as regards clinical outcome. These results demonstrate significant underlying heterogeneity within CEBPA mutation-positive AML with prognostic relevance.
Blood | 2012
Ana Flávia Tibúrcio Ribeiro; Marta Pratcorona; Claudia Erpelinck-Verschueren; Veronika Rockova; Mathijs A. Sanders; Saman Abbas; Maria E. Figueroa; Annelieke Zeilemaker; Ari Melnick; Bob Löwenberg; Peter J. M. Valk; Ruud Delwel
The prevalence, the prognostic effect, and interaction with other molecular markers of DNMT3A mutations was studied in 415 patients with acute myeloid leukemia (AML) younger than 60 years. We show mutations in DNMT3A in 96 of 415 patients with newly diagnosed AML (23.1%). Univariate Cox regression analysis showed that patients with DNMT3A(mutant) AML show significantly worse overall survival (OS; P = .022; hazard ratio [HR], 1.38; 95% confidence interval [CI], 1.04-1.81), and relapse-free survival (RFS; P = .005; HR, 1.52; 95% CI, 1.13-2.05) than DNMT3A(wild-type) AMLs. In a multivariable analysis, DNMT3A mutations express independent unfavorable prognostic value for OS (P = .003; HR, 1.82; 95% CI, 1.2-2.7) and RFS (P < .001; HR, 2.2; 95% CI, 1.4-3.3). In a composite genotypic subset of cytogenetic intermediate-risk AML without FLT3-ITD and NPM1 mutations, this association is particularly evident (OS: P = .013; HR, 2.09; 95% CI, 1.16-3.77; RFS: P = .001; HR, 2.65; 95% CI, 1.48-4.89). The effect of DNMT3A mutations in human AML remains elusive, because DNMT3A(mutant) AMLs did not express a methylation or gene expression signature that discriminates them from patients with DNMT3A(wild-type) AML. We conclude that DNMT3A mutation status is an important factor to consider for risk stratification of patients with AML.
Blood | 2011
Sanne Lugthart; Maria E. Figueroa; Eric Bindels; Lucy Skrabanek; Yushan Li; Stefan Meyer; Claudia Erpelinck-Verschueren; John M. Greally; Bob Löwenberg; Ari Melnick; Ruud Delwel
DNA methylation patterns are frequently dysregulated in cancer, although little is known of the mechanisms through which specific gene sets become aberrantly methylated. The ecotropic viral integration site 1 (EVI1) locus encodes a DNA binding zinc-finger transcription factor that is aberrantly expressed in a subset of acute myeloid leukemia (AML) patients with poor outcome. We find that the promoter DNA methylation signature of EVI1 AML blast cells differs from those of normal CD34(+) bone marrow cells and other AMLs. This signature contained 294 differentially methylated genes, of which 238 (81%) were coordinately hypermethylated. An unbiased motif analysis revealed an overrepresentation of EVI1 binding sites among these aberrantly hypermethylated loci. EVI1 was capable of binding to these promoters in 2 different EVI1-expressing cell lines, whereas no binding was observed in an EVI1-negative cell line. Furthermore, EVI1 was observed to interact with DNA methyl transferases 3A and 3B. Among the EVI1 AML cases, 2 subgroups were recognized, of which 1 contained AMLs with many more methylated genes, which was associated with significantly higher levels of EVI1 than in the cases of the other subgroup. Our data point to a role for EVI1 in directing aberrant promoter DNA methylation patterning in EVI1 AMLs.
Haematologica | 2012
Marta Pratcorona; Saman Abbas; Mathijs A. Sanders; Jasper Koenders; François G. Kavelaars; Claudia Erpelinck-Verschueren; Annelieke Zeilemakers; Bob Löwenberg
Somatic mutations in the additional sex comb-like 1 (ASXL1) gene have been described in various types of myeloid malignancies, including acute myeloid leukemia. Analysis of novel markers, such as ASXL1 mutations, in independent clinical trials is indispensable before considering them for clinical decision-making. We analyzed 882 well-characterized acute myeloid leukemia cases to determine the prevalence and prognostic impact of ASXL1 exon12 mutations. Truncating ASXL1 mutations were present in 46 cases (5.3%). ASXL1 mutations were inversely associated with FLT3 internal tandem duplications and mutually exclusive with NPM1 mutations. ASXL1 mutations were an unfavorable prognostic factor as regards survival (median overall survival 15.9 months vs. 22.3 months; P=0.019), with a significantly lower complete response rate (61% vs. 79.6%; P=0.004). In multivariate analyses, ASXL1 mutations were independently associated with inferior poor overall survival (HR 1.52, P=0.032). In conclusion, ASXL1 mutations are common mutations in acute myeloid leukemia and indicate a poor therapy outcome.
Blood | 2009
Maria E. Figueroa; Bas J. Wouters; Lucy Skrabanek; Jacob L. Glass; Yushan Li; Claudia Erpelinck-Verschueren; Anton W. Langerak; Bob Löwenberg; Melissa Fazzari; John M. Greally; Ari Melnick; Ruud Delwel
Acute myeloid leukemia is a heterogeneous disease from the molecular and biologic standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients who shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, whereas the rest presented with silencing of this gene and coexpression of certain T-cell markers. DNA methylation studies revealed that these 2 groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA-silenced leukemias also displayed marked hypermethylation compared with normal CD34(+) hematopoietic cells, whereas CEBPA mutant cases showed only mild changes in DNA methylation compared with these normal progenitors. Biologically, CEBPA-silenced leukemias presented with a decreased response to myeloid growth factors in vitro.
Blood | 2009
Fernando P.G. Silva; Sigrid Swagemakers; Claudia Erpelinck-Verschueren; Bas J. Wouters; Ruud Delwel; Harry Vrieling; Peter J. van der Spek; Peter J. M. Valk; Micheline Giphart-Gassler
Minimally differentiated acute myeloid leukemia (AML-M0) is defined by immature morphology and expression of early hematologic markers. By gene expression profiling (GEP) and subsequent unsupervised analysis of 35 AML-M0 samples and 253 previously reported AML cases, we demonstrate that AML-M0 cases express a unique signature that is largely separated from other molecular subtypes. Hematologic transcription regulators such as CEBPA, CEBPD, and ETV6, and the differentiation associated gene MPO appeared strongly down-regulated, in line with the primitive state of this leukemia. AML-M0 frequently carries loss-of-function RUNX1 mutation. Unsupervised analyses revealed a subdivision between AML-M0 cases with and without RUNX1 mutations. RUNX1 mutant AML-M0 samples showed a distinct up-regulation of B cell-related genes such as members of the B-cell receptor complex, transcription regulators RUNX3, ETS2, IRF8, or PRDM1, and major histocompatibility complex class II genes. Importantly, prediction with high accuracy of the AML-M0 subtype and prediction of patients carrying RUNX1 mutation within this subtype were possible based on the expression level of only a few transcripts. We propose that RUNX1 mutations in this AML subgroup cause lineage infidelity, leading to aberrant coexpression of myeloid and B-lymphoid genes. Furthermore, our results imply that AML-M0, although originally determined by morphology, constitutes a leukemia subgroup.
Leukemia | 2005
Jeannet Nigten; M.C. de Ridder; Claudia Erpelinck-Verschueren; Gorica Nikoloski; B.A. van der Reijden; S. van Wageningen; P.B. van Hennik; T.J.M. de Witte; B Lowenberg; J.H. Jansen
Acute promyelocytic leukemia (APL) is uniquely sensitive to treatment with all-trans retinoic acid (ATRA), which results in the expression of genes that induce the terminal granulocytic differentiation of the leukemic blasts. Here we report the identification of two ATRA responsive genes in APL cells, ID1 and ID2. These proteins act as antagonists of basic helix–loop–helix (bHLH) transcription factors. ATRA induced a rapid increase in ID1 and ID2, both in the APL cell line NB4 as well as in primary patient cells. In addition, a strong downregulation of E2A was observed. E2A acts as a general heterodimerization partner for many bHLH proteins that are involved in differentiation control in various tissues. The simultaneous upregulation of ID1 and ID2, and the downregulation of E2A suggest a role for bHLH proteins in the induction of differentiation of APL cells following ATRA treatment. To test the relevance of this upregulation, ID1 and ID2 were overexpressed in NB4 cells. Overexpression inhibited proliferation and induced a G0/G1 accumulation. These results indicate that ID1 and ID2 are important retinoic acid responsive genes in APL, and suggest that the inhibition of specific bHLH transcription factor complexes may play a role in the therapeutic effect of ATRA in APL.
The New England Journal of Medicine | 2018
Mojca Jongen-Lavrencic; Tim Grob; Diana Hanekamp; François G. Kavelaars; Adil al Hinai; Annelieke Zeilemaker; Claudia Erpelinck-Verschueren; Patrycja L. Gradowska; Rosa Meijer; Jacqueline Cloos; Bart J. Biemond; Carlos Graux; Marinus van Marwijk Kooy; Markus G. Manz; Thomas Pabst; Jakob Passweg; Violaine Havelange; Gert J. Ossenkoppele; Mathijs A. Sanders; Gerrit Jan Schuurhuis; Bob Löwenberg
BACKGROUND Patients with acute myeloid leukemia (AML) often reach complete remission, but relapse rates remain high. Next‐generation sequencing enables the detection of molecular minimal residual disease in virtually every patient, but its clinical value for the prediction of relapse has yet to be established. METHODS We conducted a study involving patients 18 to 65 years of age who had newly diagnosed AML. Targeted next‐generation sequencing was carried out at diagnosis and after induction therapy (during complete remission). End points were 4‐year rates of relapse, relapse‐free survival, and overall survival. RESULTS At least one mutation was detected in 430 out of 482 patients (89.2%). Mutations persisted in 51.4% of those patients during complete remission and were present at various allele frequencies (range, 0.02 to 47%). The detection of persistent DTA mutations (i.e., mutations in DNMT3A, TET2, and ASXL1), which are often present in persons with age‐related clonal hematopoiesis, was not correlated with an increased relapse rate. After the exclusion of persistent DTA mutations, the detection of molecular minimal residual disease was associated with a significantly higher relapse rate than no detection (55.4% vs. 31.9%; hazard ratio, 2.14; P<0.001), as well as with lower rates of relapse‐free survival (36.6% vs. 58.1%; hazard ratio for relapse or death, 1.92; P<0.001) and overall survival (41.9% vs. 66.1%; hazard ratio for death, 2.06; P<0.001). Multivariate analysis confirmed that the persistence of non‐DTA mutations during complete remission conferred significant independent prognostic value with respect to the rates of relapse (hazard ratio, 1.89; P<0.001), relapse‐free survival (hazard ratio for relapse or death, 1.64; P = 0.001), and overall survival (hazard ratio for death, 1.64; P = 0.003). A comparison of sequencing with flow cytometry for the detection of residual disease showed that sequencing had significant additive prognostic value. CONCLUSIONS Among patients with AML, the detection of molecular minimal residual disease during complete remission had significant independent prognostic value with respect to relapse and survival rates, but the detection of persistent mutations that are associated with clonal hematopoiesis did not have such prognostic value within a 4‐year time frame. (Funded by the Queen Wilhelmina Fund Foundation of the Dutch Cancer Society and others.)
Leukemia | 2010
S Abbas; Claudia Erpelinck-Verschueren; C S Goudswaard; Bob Lowenberg; Peter J. M. Valk
Mutant Wilms’ tumor 1 ( WT1 ) mRNA with premature termination codons in acute myeloid leukemia (AML) is sensitive to nonsense-mediated RNA decay (NMD)