Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia N. Tomes is active.

Publication


Featured researches published by Claudia N. Tomes.


Journal of Biological Chemistry | 2002

The Intraacrosomal Calcium Pool Plays a Direct Role in Acrosomal Exocytosis

Gerardo A. De Blas; Marcela A. Michaut; Claudia L. Treviño; Claudia N. Tomes; Roberto Yunes; Alberto Darszon; Luis S. Mayorga

The acrosome reaction is a unique type of regulated exocytosis. The single secretory granule of the sperm fuses at multiple points with the overlying plasma membrane. In the past few years we have characterized several aspects of this process using streptolysin O-permeabilized human spermatozoa. Here we show that Rab3A triggers acrosomal exocytosis in the virtual absence of calcium in the cytosolic compartment. Interestingly, exocytosis is blocked when calcium is depleted from intracellular stores. By using a membrane-permeant fluorescent calcium probe, we observed that the acrosome actually behaves as a calcium store. Depleting calcium from this compartment by using a light-sensitive chelator prevents secretion promoted by Rab3A. UV inactivation of the chelator restores exocytosis. Rab3A-triggered exocytosis is blocked by calcium pump and inositol 1,4,5-trisphosphate (IP3)-sensitive calcium channel inhibitors. Calcium measurements inside and outside the acrosome showed that Rab3A promotes a calcium efflux from the granule. Interestingly, release of calcium through IP3-sensitive calcium channels was necessary even when exocytosis was initiated by increasing free calcium in the extraacrosomal compartment in both permeabilized and intact spermatozoa. Our results show that a calcium efflux from the acrosome through IP3-sensitive channels is necessary downstream Rab3A activation during the membrane fusion process leading to acrosomal exocytosis.


PLOS Biology | 2005

Dynamics of SNARE Assembly and Disassembly during Sperm Acrosomal Exocytosis

Gerardo A. De Blas; Carlos M. Roggero; Claudia N. Tomes; Luis S. Mayorga

The dynamics of SNARE assembly and disassembly during membrane recognition and fusion is a central issue in intracellular trafficking and regulated secretion. Exocytosis of sperms single vesicle—the acrosome—is a synchronized, all-or-nothing process that happens only once in the life of the cell and depends on activation of both the GTP-binding protein Rab3 and of neurotoxin-sensitive SNAREs. These characteristics make acrosomal exocytosis a unique mammalian model for the study of the different phases of the membrane fusion cascade. By using a functional assay and immunofluorescence techniques in combination with neurotoxins and a photosensitive Ca2+ chelator we show that, in unactivated sperm, SNAREs are locked in heterotrimeric cis complexes. Upon Ca2+ entry into the cytoplasm, Rab3 is activated and triggers NSF/α-SNAP-dependent disassembly of cis SNARE complexes. Monomeric SNAREs in the plasma membrane and the outer acrosomal membrane are then free to reassemble in loose trans complexes that are resistant to NSF/α-SNAP and differentially sensitive to cleavage by two vesicle-associated membrane protein (VAMP)–specific neurotoxins. Ca2+ must be released from inside the acrosome to trigger the final steps of membrane fusion that require fully assembled trans SNARE complexes and synaptotagmin. Our results indicate that the unidirectional and sequential disassembly and assembly of SNARE complexes drive acrosomal exocytosis.


Iubmb Life | 2007

Acrosomal exocytosis, a special type of regulated secretion

Luis S. Mayorga; Claudia N. Tomes; Silvia A. Belmonte

The acrosome is a single secretory granule present in the head of mammalian ‐ and other animal groups ‐ sperm. Secretion of this granule is an absolute requirement for physiological fertilization. Acrosome exocytosis is a synchronized and tightly regulated all‐or‐nothing process, with no recycling of membranes. In the last few years, it has been shown that acrosomal exocytosis is mediated by a molecular mechanism that is homologous to that reported in the secretion of neuroendocrinal cells. Moreover, because of its particular characteristics, acrosomal exocytosis is a unique mammalian model for the study of the different steps of the membrane fusion cascade. Combining results in intact and permeabilized sperm, the following sequence of events has been proposed. In resting sperm, SNARE proteins are locked in inactive cis complexes. Sperm activation causes a calcium increase in the cytoplasm that promotes the production of cAMP and activates Rab3A. Afterwards, NSF and αSNAP disassemble cis complexes and the free SNAREs are then able to reassemble in loose trans complexes. Membrane fusion is arrested at this stage until calcium is released from inside the acrosome by inositol 1,4,5‐trisphosphate‐sensitive calcium channels to trigger the final steps of membrane fusion, which require fully assembled trans SNARE complexes and the calcium sensor synaptotagmin. This working model is still incomplete and tentative. Its improvement will be important to share light on this and other processes of regulated exocytosis. Moreover, it will bring new perspectives into the field of sperm‐related fertility and sterility. IUBMB Life, 59: 286‐292, 2007


Biology of Reproduction | 2000

Rab3A Triggers the Acrosome Reaction in Permeabilized Human Spermatozoa

Roberto Yunes; Marcela A. Michaut; Claudia N. Tomes; Luis S. Mayorga

Abstract The acrosome reaction is a regulated exocytotic process leading to a massive fusion between the outer acrosomal membrane and the cell membrane. In spite of the great amount of information available related to the acrosome reaction in several species, there is a remarkable paucity about the role of monomeric guanosine triphosphatases (GTPases) of the Rab family—well-established participants in exocytosis in other cell types—in the acrosome reaction. Western blot and immunofluorescence analysis indicate that Rab3A is present in human spermatozoa and localizes to the acrosomal region in the sperm head. One difficulty in studying the role of proteins in intact cells is the fact that they are unable to cross the cell membrane. Therefore, we established a working model of streptolysin O-permeabilized human spermatozoa. Permeabilized spermatozoa were able to respond in a regulated way to different stimuli, such as G protein activators and calcium. An acrosomal reaction was also triggered by a Rab3A peptide corresponding to the effector region. More important, recombinant Rab3A protein in the GTP-bound form caused acrosome exocytosis. The same protein loaded with GDP or Rab11 in the GTP-bound form was inactive. Also, recombinant GDI (GDP dissociation inhibitor)—a protein that releases Rab proteins from membrane—inhibited a GTPγS-stimulated acrosome reaction. Our results indicate that 1) permeabilized spermatozoa can be used to study the role of macromolecules in the acrosome reaction, 2) Rab3A is present in human spermatozoa, and 3) Rab3A or another Rab3 isoform is involved in the exocytosis of the acrosomal granule in human spermatozoa.


Journal of Biological Chemistry | 2009

Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis

María Teresita Branham; Matías A. Bustos; Gerardo A. De Blas; Holger Rehmann; Valeria E. P. Zarelli; Claudia L. Treviño; Alberto Darszon; Luis S. Mayorga; Claudia N. Tomes

Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.


Journal of Biological Chemistry | 2006

Calcium-induced Acrosomal Exocytosis Requires cAMP Acting through a Protein Kinase A-independent, Epac-mediated Pathway

María Teresita Branham; Luis S. Mayorga; Claudia N. Tomes

Epac, a guanine nucleotide exchange factor for the small GTPase Rap, binds to and is activated by the second messenger cAMP. In sperm, there are a number of signaling pathways required to achieve egg-fertilizing ability that depend upon an intracellular rise of cAMP. Most of these processes were thought to be mediated by cAMP-dependent protein kinases. Here we report a new dependence for the cAMP-induced acrosome reaction involving Epac. The acrosome reaction is a specialized type of regulated exocytosis leading to a massive fusion between the outer acrosomal and the plasma membranes of sperm cells. Ca2+ is the archetypical trigger of regulated exocytosis, and we show here that its effects on acrosomal release are fully mediated by cAMP. Ca2+ failed to trigger acrosomal exocytosis when intracellular cAMP was depleted by an exogenously added phosphodiesterase or when Epac was sequestered by specific blocking antibodies. The nondiscriminating dibutyryl-cAMP and the Epac-selective 8-(p-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate analogues triggered the acrosome reaction in the effective absence of extracellular Ca2+. This indicates that cAMP, via Epac activation, has the ability to drive the whole cascade of events necessary to bring exocytosis to completion, including tethering and docking of the acrosome to the plasma membrane, priming of the fusion machinery, mobilization of intravesicular Ca2+, and ultimately, bilayer mixing and fusion. cAMP-elicited exocytosis was sensitive to anti-α-SNAP, anti-NSF, and anti-Rab3A antibodies, to intra-acrosomal Ca2+ chelators, and to botulinum toxins but was resistant to cAMP-dependent protein kinase blockers. These experiments thus identify Epac in human sperm and evince its indispensable role downstream of Ca2+ in exocytosis.


Journal of Biological Chemistry | 2007

Complexin/synaptotagmin interplay controls acrosomal exocytosis

Carlos M. Roggero; Gerardo A. De Blas; Han Dai; Claudia N. Tomes; Josep Rizo; Luis S. Mayorga

Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. Regulated secretion requires SNARE proteins and, in neurons, also synaptotagmin I and complexin. Recent reports suggest that complexin imposes a fusion block that is released by Ca2+ and synaptotagmin I. However, no direct evidence for this model in secreting cells has been provided and whether this complexin/synaptotagmin interplay functions in other types of secretion is unknown. In this report, we show that the C2B domain of synaptotagmin VI and an anti-complexin antibody blocked the formation of trans SNARE complexes in permeabilized human sperm, and that this effect was reversed by adding complexin. In contrast, an excess of complexin stopped exocytosis at a later step, when SNAREs were assembled in loose trans complexes. Interestingly, this blockage was released by the addition of the synaptotagmin VI C2B domain in the presence of Ca2+. We have previously demonstrated that the activity of this domain is regulated by protein kinase C-mediated phosphorylation. Here, we show that a phosphomimetic mutation in the polybasic region of the C2B domain strongly affects its Ca2+ and phospholipids binding properties. Importantly, this mutation completely abrogates its ability to rescue the complexin block. Our results show that the functional interplay between complexin and synaptotagmin has a central role in a physiological secretion event, and that this interplay can be modulated by phosphorylation of the C2B domain.


Journal of Biological Chemistry | 2009

PTP1B Dephosphorylates N-Ethylmaleimide-sensitive Factor and Elicits SNARE Complex Disassembly during Human Sperm Exocytosis

Valeria E. P. Zarelli; María C. Ruete; Carlos M. Roggero; Luis S. Mayorga; Claudia N. Tomes

The reversible phosphorylation of tyrosyl residues in proteins is a cornerstone of the signaling pathways that regulate numerous cellular responses. Protein tyrosine phosphorylation is controlled through the concerted actions of protein-tyrosine kinases and phosphatases. The goal of the present study was to unveil the mechanisms by which protein tyrosine dephosphorylation modulates secretion. The acrosome reaction, a specialized type of regulated exocytosis undergone by sperm, is initiated by calcium and carried out by a number of players, including tyrosine kinases and phosphatases, and fusion-related proteins such as Rab3A, α-SNAP, N-ethylmaleimide-sensitive factor (NSF), SNAREs, complexin, and synaptotagmin VI. We report here that inducers were unable to elicit the acrosome reaction when permeabilized human sperm were loaded with anti-PTP1B antibodies or with the dominant-negative mutant PTP1B D181A; subsequent introduction of wild type PTP1B or NSF rescued exocytosis. Wild type PTP1B, but not PTP1B D181A, caused cis SNARE complex dissociation during the acrosome reaction through a mechanism involving NSF. Unlike its non-phosphorylated counterpart, recombinant phospho-NSF failed to dissociate SNARE complexes from rat brain membranes. These results strengthen our previous observation that NSF activity is regulated rather than constitutive during sperm exocytosis and indicate that NSF must be dephosphorylated by PTP1B to disassemble SNARE complexes. Interestingly, phospho-NSF served as a substrate for PTP1B in an in vitro assay. Our findings demonstrate that phosphorylation of NSF on tyrosine residues prevents its SNARE complex dissociation activity and establish for the first time a role for PTP1B in the modulation of the membrane fusion machinery.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Rab27 and Rab3 sequentially regulate human sperm dense-core granule exocytosis.

Matías A. Bustos; Ornella Lucchesi; María C. Ruete; Luis S. Mayorga; Claudia N. Tomes

Two so-called “secretory Rabs,” Rab3 and Rab27, regulate late steps during dense-core vesicle exocytosis in neuroendocrine cells. Sperm contain a single large dense-core granule that is released by regulated exocytosis (termed the acrosome reaction) during fertilization or on exposure to inducers in vitro. Sperm exocytosis uses the same fusion machinery as neurons and neuroendocrine cells, with an additional requirement for active Rab3. Here we show that Rab27 is also required for the acrosome reaction, as demonstrated by the inability of inducers to elicit exocytosis when streptolysin O-permeabilized human sperm were loaded with inhibitory anti-Rab27 antibodies or the Rab27–GTP binding domain of the effector Slac2-b. The levels of GTP-bound Rab27 increased on initiation of exocytosis, as did the proportion of GTP-bound Rab3A. We have developed a fluorescence microscopy-based method for detecting endogenous Rab3A-GTP and Rab27-GTP in the acrosomal region of human sperm. Challenge with an inducer increased the population of cells exhibiting GTP-bound Rabs in this subcellular domain. Interestingly, introducing recombinant Rab27A loaded with GTP-γ-S into sperm elicited a remarkable increase in the number of cells evincing GTP-bound Rab3A. In the converse condition, recombinant Rab3A did not modify the percentage of Rab27-GTP–containing cells. Furthermore, Rab27A-GTP recruited a Rab3 GDP/GTP exchange factor (GEF) activity. Our findings suggest that Rab27/Rab3A constitutes a Rab-GEF cascade in dense-core vesicle exocytosis.


PLOS ONE | 2011

α-SNAP Prevents Docking of the Acrosome during Sperm Exocytosis because It Sequesters Monomeric Syntaxin

Facundo Rodríguez; Matías A. Bustos; María N. Zanetti; María C. Ruete; Luis S. Mayorga; Claudia N. Tomes

α-SNAP has an essential role in membrane fusion that consists of bridging cis SNARE complexes to NSF. α-SNAP stimulates NSF, which releases itself, α-SNAP, and individual SNAREs that subsequently re-engage in the trans arrays indispensable for fusion. α-SNAP also binds monomeric syntaxin and NSF disengages the α-SNAP/syntaxin dimer. Here, we examine why recombinant α-SNAP blocks secretion in permeabilized human sperm despite the fact that the endogenous protein is essential for membrane fusion. The only mammalian organism with a genetically modified α-SNAP is the hyh mouse strain, which bears a M105I point mutation; males are subfertile due to defective sperm exocytosis. We report here that recombinant α-SNAP-M105I has greater affinity for the cytosolic portion of immunoprecipitated syntaxin than the wild type protein and in consequence NSF is less efficient in releasing the mutant. α-SNAP-M105I is a more potent sperm exocytosis blocker than the wild type and requires higher concentrations of NSF to rescue its effect. Unlike other fusion scenarios where SNAREs are subjected to an assembly/disassembly cycle, the fusion machinery in sperm is tuned so that SNAREs progress uni-directionally from a cis configuration in resting cells to monomeric and subsequently trans arrays in cells challenged with exocytosis inducers. By means of functional and indirect immunofluorescense assays, we show that recombinant α-SNAPs — wild type and M105I — inhibit exocytosis because they bind monomeric syntaxin and prevent this SNARE from assembling with its cognates in trans. Sequestration of free syntaxin impedes docking of the acrosome to the plasma membrane assessed by transmission electron microscopy. The N-terminal deletion mutant α-SNAP-(160–295), unable to bind syntaxin, affects neither docking nor secretion. The implications of this study are twofold: our findings explain the fertility defect of hyh mice and indicate that assembly of SNAREs in trans complexes is essential for docking.

Collaboration


Dive into the Claudia N. Tomes's collaboration.

Top Co-Authors

Avatar

Luis S. Mayorga

National University of Cuyo

View shared research outputs
Top Co-Authors

Avatar

Gerardo A. De Blas

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Marcela A. Michaut

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Matías A. Bustos

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

María C. Ruete

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Carlos M. Roggero

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Ornella Lucchesi

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Roberto Yunes

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Facundo Rodríguez

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

G De Blas

Facultad de Ciencias Médicas

View shared research outputs
Researchain Logo
Decentralizing Knowledge