Gerardo A. De Blas
Facultad de Ciencias Médicas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerardo A. De Blas.
Journal of Biological Chemistry | 2002
Gerardo A. De Blas; Marcela A. Michaut; Claudia L. Treviño; Claudia N. Tomes; Roberto Yunes; Alberto Darszon; Luis S. Mayorga
The acrosome reaction is a unique type of regulated exocytosis. The single secretory granule of the sperm fuses at multiple points with the overlying plasma membrane. In the past few years we have characterized several aspects of this process using streptolysin O-permeabilized human spermatozoa. Here we show that Rab3A triggers acrosomal exocytosis in the virtual absence of calcium in the cytosolic compartment. Interestingly, exocytosis is blocked when calcium is depleted from intracellular stores. By using a membrane-permeant fluorescent calcium probe, we observed that the acrosome actually behaves as a calcium store. Depleting calcium from this compartment by using a light-sensitive chelator prevents secretion promoted by Rab3A. UV inactivation of the chelator restores exocytosis. Rab3A-triggered exocytosis is blocked by calcium pump and inositol 1,4,5-trisphosphate (IP3)-sensitive calcium channel inhibitors. Calcium measurements inside and outside the acrosome showed that Rab3A promotes a calcium efflux from the granule. Interestingly, release of calcium through IP3-sensitive calcium channels was necessary even when exocytosis was initiated by increasing free calcium in the extraacrosomal compartment in both permeabilized and intact spermatozoa. Our results show that a calcium efflux from the acrosome through IP3-sensitive channels is necessary downstream Rab3A activation during the membrane fusion process leading to acrosomal exocytosis.
PLOS Biology | 2005
Gerardo A. De Blas; Carlos M. Roggero; Claudia N. Tomes; Luis S. Mayorga
The dynamics of SNARE assembly and disassembly during membrane recognition and fusion is a central issue in intracellular trafficking and regulated secretion. Exocytosis of sperms single vesicle—the acrosome—is a synchronized, all-or-nothing process that happens only once in the life of the cell and depends on activation of both the GTP-binding protein Rab3 and of neurotoxin-sensitive SNAREs. These characteristics make acrosomal exocytosis a unique mammalian model for the study of the different phases of the membrane fusion cascade. By using a functional assay and immunofluorescence techniques in combination with neurotoxins and a photosensitive Ca2+ chelator we show that, in unactivated sperm, SNAREs are locked in heterotrimeric cis complexes. Upon Ca2+ entry into the cytoplasm, Rab3 is activated and triggers NSF/α-SNAP-dependent disassembly of cis SNARE complexes. Monomeric SNAREs in the plasma membrane and the outer acrosomal membrane are then free to reassemble in loose trans complexes that are resistant to NSF/α-SNAP and differentially sensitive to cleavage by two vesicle-associated membrane protein (VAMP)–specific neurotoxins. Ca2+ must be released from inside the acrosome to trigger the final steps of membrane fusion that require fully assembled trans SNARE complexes and synaptotagmin. Our results indicate that the unidirectional and sequential disassembly and assembly of SNARE complexes drive acrosomal exocytosis.
Journal of Biological Chemistry | 2009
María Teresita Branham; Matías A. Bustos; Gerardo A. De Blas; Holger Rehmann; Valeria E. P. Zarelli; Claudia L. Treviño; Alberto Darszon; Luis S. Mayorga; Claudia N. Tomes
Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
PLOS ONE | 2009
Gerardo A. De Blas; Alberto Darszon; Ana Y. Ocampo; Carmen J. Serrano; Laura E. Castellano; Enrique O. Hernández-González; Mayel Chirinos; Fernando Larrea; Carmen Beltrán; Claudia L. Treviño
Background The transient receptor potential channel (TRP) family includes more than 30 proteins; they participate in various Ca2+ dependent processes. TRPs are functionally diverse involving thermal, chemical and mechanical transducers which modulate the concentration of intracellular Ca2+ ([Ca2+]i). Ca2+ triggers and/or regulates principal sperm functions during fertilization such as motility, capacitation and the acrosome reaction. Nevertheless, the presence of the TRPM subfamily in sperm has not been explored. Principal Findings Here we document with RT-PCR, western blot and immunocitochemistry analysis the presence of TRPM8 in human sperm. We also examined the participation of this channel in sperm function using specific agonists (menthol and temperature) and antagonists (BCTC and capsazepine). Computer-aided sperm analysis revealed that menthol did not significantly alter human sperm motility. In contrast, menthol induced the acrosome reaction in human sperm. This induction was inhibited about 70% by capsazepine (20 µM) and 80% by BCTC (1.6 µM). Activation of TRPM8 either by temperature or menthol induced [Ca2+]i increases in human sperm measured by fluorescence in populations or individual sperm cells, effect that was also inhibited by capsazepine (20 µM) and BCTC (1.6 µM). However, the progesterone and ZP3-induced acrosome reaction was not inhibited by capsazepine or BCTC, suggesting that TRPM8 activation triggers this process by a different signaling pathway. Conclusions This is the first report dealing with the presence of a thermo sensitive channel (TRPM8) in human sperm. This channel could be involved in cell signaling events such as thermotaxis or chemotaxis.
Journal of Biological Chemistry | 2007
Carlos M. Roggero; Gerardo A. De Blas; Han Dai; Claudia N. Tomes; Josep Rizo; Luis S. Mayorga
Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. Regulated secretion requires SNARE proteins and, in neurons, also synaptotagmin I and complexin. Recent reports suggest that complexin imposes a fusion block that is released by Ca2+ and synaptotagmin I. However, no direct evidence for this model in secreting cells has been provided and whether this complexin/synaptotagmin interplay functions in other types of secretion is unknown. In this report, we show that the C2B domain of synaptotagmin VI and an anti-complexin antibody blocked the formation of trans SNARE complexes in permeabilized human sperm, and that this effect was reversed by adding complexin. In contrast, an excess of complexin stopped exocytosis at a later step, when SNAREs were assembled in loose trans complexes. Interestingly, this blockage was released by the addition of the synaptotagmin VI C2B domain in the presence of Ca2+. We have previously demonstrated that the activity of this domain is regulated by protein kinase C-mediated phosphorylation. Here, we show that a phosphomimetic mutation in the polybasic region of the C2B domain strongly affects its Ca2+ and phospholipids binding properties. Importantly, this mutation completely abrogates its ability to rescue the complexin block. Our results show that the functional interplay between complexin and synaptotagmin has a central role in a physiological secretion event, and that this interplay can be modulated by phosphorylation of the C2B domain.
The FASEB Journal | 2007
Cecilia I. Lopez; Silvia A. Belmonte; Gerardo A. De Blas; Luis S. Mayorga
The acrosome reaction is a regulated Ca2+‐dependent secretion event required for sperm‐egg interaction. Previous studies indicate that the process requires Rab3‐dependent tethering of membranes, SNARE complex assembly, and Ca2+‐mediated activation of synaptotagmin. Sperm are transcriptionally and translationally inactive; hence, most studies of the exocytosis mechanism are limited to membrane‐per‐meant reagents. The effect of proteins involved in exocytosis has been assessed only in permeabilized cells. Polyarginine peptides are a powerful tool for delivering macromolecules to cells. Most reports indicate that membrane translocation of arginine‐containing proteins requires endocytosis; therefore, this strategy might not be useful in sperm. However, our results indicate that GST and Rab3A, when fused with an arginine‐rich peptide, were able to translocate into sperm. Moreover, membrane‐permeant Rab3A initiated exocytosis when prenylated and activated with GTP. We show here that a key event after the cytoplas‐mic Ca2+ increase caused by progesterone is the activation of Rab3A. When active Rab3A is introduced into sperm, Ca2+ in the extracellular medium and in the cytoplasm is dispensable. However, a Ca2+ efflux from inside the acrosome is still required to achieve exocy‐tosis. In conclusion, arginine‐containing proteins can penetrate the sperm plasma membrane and thus are valuable tools to study sperm physiology in intact cells.— Lopez, C. I., Belmonte, S. A., De Blas, G. A., Mayorga, L. S. Membrane‐permeant Rab3A triggers acrosomal exocytosis in living human sperm. FASEB J. 21, 4121–4130 (2007)
Journal of Cellular Physiology | 2011
Pablo Martínez-López; Claudia L. Treviño; José Luis de la Vega-Beltrán; Gerardo A. De Blas; Esteban Monroy; Carmen Beltrán; Gerardo Orta; Gerard M. Gibbs; Moira K. O'Bryan; Alberto Darszon
Changes in the concentration of intracellular Ca2+ ([Ca2+]i) trigger and/or regulate principal sperm functions during fertilization, such as motility, capacitation, and the acrosome reaction (AR). Members of the large TRP channel family participate in a variety of Ca2+‐dependent cell signaling processes. The eight TRPM channel members constitute one of the seven groups belonging to this family. Here we document using RT‐PCR experiments the presence of Trpm2, 4, 7, and 8 in mouse spermatogenic cells. Trpm8 transcription is up‐regulated after day 30. The localization of TRPM8 protein in mouse sperm was confirmed by immunocytochemistry and Western blots. Patch clamp recordings in testicular mouse sperm revealed TRPM8 agonist (menthol and icilin) activated currents sensitive to TRPM8 inhibitors N‐(4‐t‐Butylphenyl)‐4‐(3‐Chloropyridin‐2‐yl)tetrahydropyrazine‐1(2H)‐carboxamide (BCTC) and capsazepine. These findings are consistent with the presence of functional TRPM8 in mouse sperm. Furthermore, menthol induced a [Ca2+]i increase and the AR in these cells, that were inhibited by capsazepine (20 µM) and BCTC (1.6 µM). Notably, the progesterone and zona pellucida‐induced AR was significantly (>40%) inhibited by BCTC and capsazepine, suggesting the possible participation of TRPM8 channels in this reaction. TRPM family members present in sperm could be involved in other important signaling events, such as thermotaxis, chemotaxis, and mechanosensory transduction. J. Cell. Physiol. 226: 1620–1631, 2011.
Journal of Biological Chemistry | 2010
Laila Suhaiman; Gerardo A. De Blas; Lina M. Obeid; Alberto Darszon; Luis S. Mayorga; Silvia A. Belmonte
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. Sphingosine 1-phosphate is a bioactive sphingolipid that regulates crucial physiological processes. Here we report that this lipid triggers acrosomal exocytosis in human sperm by a mechanism involving a Gi-coupled receptor. Real-time imaging showed a remarkable increase of cytosolic calcium upon activation with sphingosine 1-phosphate and pharmacological experiments indicate that the process requires extracellular calcium influx through voltage and store-operated calcium channels and efflux from intracellular stores through inositol 1,4,5-trisphosphate-sensitive calcium channels. Sphingosine 1-phosphate-induced exocytosis requires phospholipase C and protein kinase C activation. We investigated possible sources of the lipid. Western blot indicates that sphingosine kinase 1 is present in spermatozoa. Indirect immunofluorescence showed that phorbol ester, a potent protein kinase C activator that can also trigger acrosomal exocytosis, redistributes sphingosine kinase 1 to the acrosomal region. Functional assays showed that phorbol ester-induced exocytosis depends on the activation of sphingosine kinase 1. Furthermore, incorporation of 32P to sphingosine demonstrates that cells treated with the phorbol ester increase their sphingosine kinase activity that yields sphingosine 1-phosphate. We present here the first evidence indicating that human spermatozoa produce sphingosine 1-phosphate when challenged with an exocytic stimulus. These observations point to a new role of sphingosine 1-phosphate in a signaling cascade that facilitates acrosome reaction providing some clues about novel lipid molecules involved in exocytosis.
Biochimica et Biophysica Acta | 2012
Cecilia I. Lopez; Leonardo E. Pelletán; Laila Suhaiman; Gerardo A. De Blas; Nicolas Vitale; Luis S. Mayorga; Silvia A. Belmonte
Acrosomal exocytosis involves a massive fusion between the outer acrosomal and the plasma membranes of the spermatozoon triggered by stimuli that open calcium channels at the plasma membrane. Diacylglycerol has been implicated in the activation of these calcium channels. Here we report that this lipid promotes the efflux of intraacrosomal calcium and triggers exocytosis in permeabilized human sperm, implying that diacylglycerol activates events downstream of the opening of plasma membrane channels. Furthermore, we show that calcium and diacylglycerol converge in a signaling pathway leading to the production of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Addition of diacylglycerol promotes the PKC-dependent activation of PLD1. Rescue experiments adding phosphatidic acid or PIP(2) and direct measurement of lipid production suggest that both PKC and PLD1 promote PIP(2) synthesis. Inhibition of different steps of the pathway was reverted by adenophostin, an agonist of IP(3)-sensitive calcium channels, indicating that PIP(2) is necessary to keep these channels opened. However, phosphatidic acid, PIP(2), or adenophostin could not trigger exocytosis by themselves, indicating that diacylglycerol must also activate another factor. We found that diacylglycerol and phorbol ester stimulate the accumulation of the GTP-bound form of Rab3A. Together our results indicate that diacylglycerol promotes acrosomal exocytosis by i) maintaining high levels of IP(3) - an effect that depends on a positive feedback loop leading to the production of PIP(2) - and ii) stimulating the activation of Rab3A, which in turn initiates a cascade of protein interactions leading to the assembly of SNARE complexes and membrane fusion.
PLOS ONE | 2009
Luis Federico Bátiz; Gerardo A. De Blas; Marcela A. Michaut; Alfredo Ramírez; Facundo Rodríguez; M.H. Ratto; Cristian Oliver; Claudia N. Tomes; Esteban M. Rodríguez; Luis S. Mayorga
Hydrocephalus with hop gait (hyh) is a recessive inheritable disease that arose spontaneously in a mouse strain. A missense mutation in the Napa gene that results in the substitution of a methionine for isoleucine at position 105 (M105I) of αSNAP has been detected in these animals. αSNAP is a ubiquitous protein that plays a key role in membrane fusion and exocytosis. In this study, we found that male hyh mice with a mild phenotype produced morphologically normal and motile sperm, but had a strongly reduced fertility. When stimulated with progesterone or A23187 (a calcium ionophore), sperm from these animals had a defective acrosome reaction. It has been reported that the M105I mutation affects the expression but not the function of the protein. Consistent with an hypomorphic phenotype, the testes and epididymides of hyh mice had low amounts of the mutated protein. In contrast, sperm had αSNAP levels indistinguishable from those found in wild type cells, suggesting that the mutated protein is not fully functional for acrosomal exocytosis. Corroborating this possibility, addition of recombinant wild type αSNAP rescued exocytosis in streptolysin O-permeabilized sperm, while the mutant protein was ineffective. Moreover, addition of recombinant αSNAP. M105I inhibited acrosomal exocytosis in permeabilized human and wild type mouse sperm. We conclude that the M105I mutation affects the expression and also the function of αSNAP, and that a fully functional αSNAP is necessary for acrosomal exocytosis, a key event in fertilization.